Intracoronary injection of the bone marrow-derived mononuclear cells (MNCs) is emerging as a potentially novel therapy for ischemic heart failure. This study was aimed at assessing the efficacy of intracoronary MNC delivery in the myocardium. The in vivo distribution and myocardial homing of intracoronarily delivered MNCs in experimental Chinese swine with acute myocardial infarction (AMI) created by occlusion of left anterior descending (LAD) coronary artery for 90 min. MNCs radiolabeled with 18F-fluoro-deoxy-glucose (18F-FDG) were delivered using a coronary catheter into the infarct-related coronary artery 1 week after AMI. Dual-nuclide single photon emission computed tomography (SPECT) revealed that 1 h after cell infusion, 6.8 +/- 1.8% of 18F-FDG-labeled MNCs occurred in the infarcted myocardium with the remaining activity found primarily in the liver and spleen. In the heart, MNCs were detected predominantly in the under-perfused myocardium. The infused cells retained in the hearts at a rate highly correlated with the under-perfused lesional sizes. Pathological examination further demonstrated that 6 weeks after infusion, compared to controls, the hearts receiving MNCs exhibited less fibrosis and inflammatory infiltrate, more viable tissue, and higher vascular density. Cardiac function was significantly improved in the MNC-infused hearts. Thus, 18F-FDG labeling and dual-nuclide SPECT imaging is capable of monitoring in vivo distribution and homing of MNCs after intracoronary infusion. MNC coronary delivery may improve cardiac function and positive ventricular remodeling in the heart with AMI.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.21277DOI Listing

Publication Analysis

Top Keywords

mononuclear cells
8
radiolabeled 18f-fluoro-deoxy-glucose
8
vivo distribution
8
coronary artery
8
cardiac function
8
mncs
7
intracoronary
4
intracoronary delivery
4
delivery autologous
4
autologous bone
4

Similar Publications

Donor-specific antibodies (DSAs) are essential causes of graft rejection in haploidentical hematopoietic stem cell transplantation (haplo-HSCT). DSAs are unavoidable for some patients who have no alternative donor. Effective interventions to reduce DSAs are still needed, and the cost of the current therapies is relatively high.

View Article and Find Full Text PDF

Objective: The progress made in cancer immunology has led to the development of innovative therapeutic strategies. However, despite these advances, the superficial characteristics of immune cells have been frequently overlooked: This oversight may be attributed to a limited understanding of the intricate relationships between immune cells and their microenvironment. This study seeks to address this limitation by comprehensively examining cell size and granularity in breast cancer (BC) patients and healthy donors (HD).

View Article and Find Full Text PDF

Cancer is one of the leading causes of death worldwide. In recent years, immune checkpoint inhibitor therapies, in addition to standard immuno- or chemotherapy and surgical approaches, have massively improved the outcome for cancer patients. However, these therapies have their limitations and improved strategies, including access to reliable cancer vaccines, are needed.

View Article and Find Full Text PDF

Background: To better understand factors associated with virologic response, we retrospectively characterized the HIV proviruses of 7 people with HIV who received long-acting cabotegravir/rilpivirine (CAB/RPV-LA) and were selected according to the following criteria: virologic control achieved despite a history of viral replication on 1 or both corresponding antiretroviral classes (n = 6) and virologic failure (VF) after CAB/RPV-LA initiation (n = 1).

Methods: Last available blood samples before the initiation of CAB/RPV-LA were analyzed retrospectively. Near full-length HIV DNA genome haplotypes were inferred from Nanopore sequencing by the in vivo Genome Diversity Analyzer to search for archived drug resistance mutations (DRMs) and evaluate the frequency and intactness of proviruses harboring DRMs.

View Article and Find Full Text PDF

functional validation of anti-CD19 chimeric antigen receptor T cells expressing lysine-specific demethylase 1 short hairpin RNA for the treatment of diffuse large B cell lymphoma.

Front Immunol

January 2025

Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China.

Background: Chimeric antigen receptor T (CAR-T) cell therapy is more effective in relapsed or refractory diffuse large B cell lymphoma (DLBCL) than other therapies, but a high proportion of patients relapse after CAR-T cell therapy owing to antigen escape, limited persistence of CAR-T cells, and immunosuppression in the tumor microenvironment. CAR-T cell exhaustion is a major cause of relapse. Epigenetic modifications can regulate T cell activation, maturation and depletion; they can be applied to reduce T cell depletion, improve infiltration, and promote memory phenotype formation to reduce relapse after CAR-T cell therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!