[The clinical application of whole chromosome painting probes in preimplantation genetic diagnosis for translocation carriers].

Zhonghua Yi Xue Yi Chuan Xue Za Zhi

Reproductive Medical Center, First Affiliated Hospital, SUN Yat-sen University, Guangzhou, Guangdong, 510080 PR China.

Published: April 2007

Objective: To make preimplantation genetic diagnosis (PGD) for female translocation carriers by analyzing first polar bodies (1PBs) with whole chromosome painting probe (WCP).

Methods: WCP was used in fluorescence in situ hybridization (FISH) analysis of 1PBs for four female Robertsonian carriers presented for PGD with 45 XX, der(13;14)(q10;q10) karyotype. All the patients underwent ovarian stimulation and during 6 h after oocyte retrieval 1PBs were biopsied and WCP were used in FISH. On day 3 after fertilization embryos diagnosed as normal or balanced were transferred.

Results: A total of 61 oocytes were collected in 4 PGD cycles. Of the 54 matured oocytes, 50 were biopsied and 45 were fixed successfully. Results were obtained in 40 1PBs. Overall, 74.1% (40/54) oocytes were diagnosed. The fertilization rate and good embryo rate were 64.8% (35/54) and 65.7% (23/35) respectively. Two clinical pregnancies were obtained. One patient delivered a normal female baby with karyotype 46, XX in June 2006. For another patient, the fetus spontaneously aborted at 9th week of pregnancy with karyotype of 45, X confirmed by amniotic villus diagnosis.

Conclusion: WCP can differentiate normal, balanced and unbalanced oocytes accurately and can be used as an efficient PGD method for female carriers of translocation.

Download full-text PDF

Source

Publication Analysis

Top Keywords

chromosome painting
8
preimplantation genetic
8
genetic diagnosis
8
normal balanced
8
[the clinical
4
clinical application
4
application chromosome
4
painting probes
4
probes preimplantation
4
diagnosis translocation
4

Similar Publications

Comparative analysis of and wheat repetitive elements and development of S genome-specific FISH painting.

Genome

January 2025

USDA-ARS, Wheat, Sorghum & Forage Research Unit, Lincoln, Nebraska, United States.

(2n=2x=14, genome SS) is a wild relative of wheat and a donor of useful traits for wheat improvement. Several whole-genome studies compared genic regions of from the section and wheat and found that is most closely related to the wheat B subgenome but is not its direct progenitor. The results showed that a B subgenome ancestor diverged from more than 4 MYA and either has not yet been discovered, or is extinct.

View Article and Find Full Text PDF

The stone marten (Martes foina) is an important species for cytogenetic studies in the order Carnivora. ZooFISH probes created from its chromosomes provided a strong and clean signal in chromosome painting experiments and were valuable for studying the evolution of carnivoran genome architecture. The research revealed that the stone marten chromosome set is similar to the presumed ancestral karyotype of the Carnivora, which added an additional value for the species.

View Article and Find Full Text PDF

Galliformes and Anseriformes are two branches of the Galloanserae group, basal to other Neognathae. In contrast to Galliformes, Anseriformes have not been thoroughly researched by cytogenetic methods. This report is focused on representatives of Anseriformes and the evolution of their chromosome sets.

View Article and Find Full Text PDF

Meiotic crossovers revealed by differential visualization of homologous chromosomes using enhanced haplotype oligo-painting in cucumber.

Plant Biotechnol J

December 2024

State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.

The interaction dynamics of homologous chromosomes during meiosis, such as recognition, pairing, synapsis, recombination, and segregation are vital for species fertility and genetic diversity within populations. Meiotic crossover (CO), a prominent feature of meiosis, ensures the faithful segregation of homologous chromosomes and enriches genetic diversity within a population. Nevertheless, visually distinguishing homologous chromosomes and COs remains an intractable challenge in cytological studies, particularly in non-model or plants with small genomes, limiting insights into meiotic dynamics.

View Article and Find Full Text PDF

Investigation of Astyanax mexicanus (Characiformes, Characidae) chromosome 1 structure reveals unmapped sequences and suggests conserved evolution.

PLoS One

November 2024

Departamento de Biologia Estrutural, Molecular e Genética, Programa de Pós-Graduação em Biologia Evolutiva, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil.

Article Synopsis
  • - The Mexican tetra, Astyanax mexicanus, has evolved unique traits like pigment loss due to natural selection in cave habitats and serves as an important species for studying evolution, with a chromosome count of 2n = 50.
  • - Researchers utilized advanced techniques including whole chromosome isolation and sequencing to analyze the structure of a specific chromosome (chromosome 1) in A. mexicanus, contributing to the understanding of its genetic makeup.
  • - Findings showed strong conservation of chromosome features across related species, suggesting a shared evolutionary origin, and the gathered data can be useful for comparative studies in other fish species of the same family.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!