The detection of rare mutant DNA from a background of wild-type alleles usually requires laborious manipulations, such as restriction enzyme digestion and gel electrophoresis. Here, we describe a protocol for homogeneous detection of rare mutant DNA in a single tube. The protocol uses a peptide nucleic acid (PNA) as both PCR clamp and sensor probe. The PNA probe binds tightly to perfectly matched wild-type DNA template but not to mismatched mutant DNA sequences, which specifically inhibits the PCR amplification of wild-type alleles without interfering with the amplification of mutant DNA. A fluorescein tag (which undergoes fluorescence resonance energy transfer with the adjacent fluorophore of an anchor probe when both are annealed to the template DNA) also allows the PNA probe to generate unambiguous melting curves to detect mutant DNA during real-time fluorescent monitoring. The whole assay takes about only 1 h. This protocol has been used for detecting mutant K-ras DNA and could be applied to the detection of other rare mutant DNAs.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nprot.2006.428DOI Listing

Publication Analysis

Top Keywords

mutant dna
20
detection rare
16
rare mutant
12
peptide nucleic
8
nucleic acid
8
pcr clamp
8
clamp sensor
8
sensor probe
8
dna
8
wild-type alleles
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!