Two-dimensional difference gel electrophoresis (2D DIGE) is a modified form of 2D electrophoresis (2DE) that allows one to compare two or three protein samples simultaneously on the same gel. The proteins in each sample are covalently tagged with different color fluorescent dyes that are designed to have no effect on the relative migration of proteins during electrophoresis. Proteins that are common to the samples appear as 'spots' with a fixed ratio of fluorescent signals, whereas proteins that differ between the samples have different fluorescence ratios. With the appropriate imaging system, DIGE is capable of reliably detecting as little as 0.5 fmol of protein, and protein differences down to +/- 15%, over a >10,000-fold protein concentration range. DIGE combined with digital image analysis therefore greatly improves the statistical assessment of proteome variation. Here we describe a protocol for conducting DIGE experiments, which takes 2-3 d to complete.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nprot.2006.234 | DOI Listing |
J Phys Chem Lett
January 2025
Department of Materials Science & Engineering, City University of Hong Kong, Kowloon, Hong Kong.
Despite numerous studies of water structures at the two-dimensional water-solid interfaces, much less is known about the phase behaviors of water at the one-dimensional (1D) liquid-solid interface. In this work, the 1D interfacial water phase behavior on the outer surface of carbon nanotube-like (CNT-like) models is studied by tuning the Lennard-Jones potential parameter ε of the surface atoms at various temperatures. Extensive molecular dynamics simulations show that ice nanotubes (INTs) can be spontaneously formed on CNT-like model surfaces without nanoconfinement.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry, Beijing Normal University, Beijing 100875, China.
The deposition of alkali metals on oxide surfaces has garnered significant interest due to their critical role in enhancing various catalytic processes. However, the atomic-scale characterization of these structures remains elusive, owing to the complex and competing interactions among the oxygen, the alkali metals, and the metal atoms within the oxides. In this work, we grew alkali metals (Na, K, Cs) on the copper oxide films on the Cu(111) surface and found the formation of hexagonally ordered monolayer films.
View Article and Find Full Text PDFJ Laparoendosc Adv Surg Tech A
January 2025
Department of Surgical Disciplines, All India Institute of Medical Sciences, New Delhi, India.
Laparo-endoscopic hernia surgery is recommended by various international bodies. However, its uptake by general surgeon is low. We aim to assess the impact of Three Dimensional (3D) endovision system in learning laparoscopic transabdominal preperitoneal (TAPP) repair of groin hernia and transferability of skills acquired from 3D to the Two Dimensional (2D) environment.
View Article and Find Full Text PDFNeuroinformatics
January 2025
Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
Blood flow velocity in the cerebral perforating arteries can be quantified in a two-dimensional plane with phase contrast magnetic imaging (2D PC-MRI). The velocity pulsatility index (PI) can inform on the stiffness of these perforating arteries, which is related to several cerebrovascular diseases. Currently, there is no open-source analysis tool for 2D PC-MRI data from these small vessels, impeding the usage of these measurements.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Machine Learning Group, Technische Universität Berlin, 10587 Berlin, Charlottenburg, Germany.
We introduce the alchemical harmonic approximation (AHA) of the absolute electronic energy for charge-neutral iso-electronic diatomics at fixed interatomic distance d0. To account for variations in distance, we combine AHA with this ansatz for the electronic binding potential, E(d)=(Eu-Es)Ec-EsEu-Esd/d0+Es, where Eu, Ec, Es correspond to the energies of the united atom, calibration at d0, and the sum of infinitely separated atoms, respectively. Our model covers the two-dimensional electronic potential energy surface spanned by distances of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!