220-plex microRNA expression profile of a single cell.

Nat Protoc

Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.

Published: June 2007

Here we describe a protocol for the detection of the microRNA (miRNA) expression profile of a single cell by stem-looped real-time PCR, which is specific to mature miRNAs. A single cell is first lysed by heat treatment without further purification. Then, 220 known miRNAs are reverse transcribed into corresponding cDNAs by stem-looped primers. This is followed by an initial PCR step to amplify the cDNAs and generate enough material to permit separate multiplex detection. The diluted initial PCR product is used as a template to check individual miRNA expression by real-time PCR. This sensitive technique permits miRNA expression profiling from a single cell, and allows analysis of a few cells from early embryos as well as individual cells (such as stem cells). It can also be used when only nanogram amounts of rare samples are available. The protocol can be completed in 7 d.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nprot.2006.161DOI Listing

Publication Analysis

Top Keywords

single cell
16
mirna expression
12
expression profile
8
profile single
8
real-time pcr
8
initial pcr
8
220-plex microrna
4
expression
4
microrna expression
4
single
4

Similar Publications

Purpose: Less than 5% of GI stromal tumors (GISTs) are driven by the loss of the succinate dehydrogenase (SDH) complex, resulting in a pervasive DNA hypermethylation pattern that leads to unique clinical features. Advanced SDH-deficient GISTs are usually treated with the same therapies targeting KIT and PDGFRA receptors as those used in metastatic GIST. However, these treatments display less activity in the absence of alternative therapeutic options.

View Article and Find Full Text PDF

The rapid, sensitive, and accurate detection of paralytic shellfish toxins (PSTs), such as saxitoxin (STX), is critical for protecting human health due to the frequent occurrence of toxic red tides. In this work, to address the low affinity of traditional mouse monoclonal antibodies (m-mAbs), rabbit monoclonal antibodies (r-mAbs) against STX were produced by a single B-cell sorting culture and a cross-selection strategy. The r-mAbs showed 100-fold improvement in sensitivity (IC = 0.

View Article and Find Full Text PDF

Introduction: Placental DNA methylation differences have been associated with timing in gestation and pregnancy complications. Maternal cell-free DNA (cfDNA) partly originates from the placenta and could enable the minimally invasive study of placental DNA methylation dynamics. We will for the first time longitudinally investigate cfDNA methylation during pregnancy by using Methylated DNA Sequencing (MeD-seq), which is compatible with low cfDNA levels and has an extensive genome-wide coverage.

View Article and Find Full Text PDF

Poly-N-acetyllactosamine (poly-LacNAc) is ubiquitously expressed on cell surface glycoconjugates, serving as the backbone of complex glycans and an extended scaffold that presents diverse glycan epitopes. The branching of poly-LacNAc, where internal galactose (Gal) residues have β1-6 linked N-acetylglucosamine (GlcNAc) attached, forms the blood group I-antigen, which is closely associated with various physiological and pathological processes including cancer progression. However, the underlying mechanisms remain unclear as many of the I-antigen sequences are undefined and inaccessible.

View Article and Find Full Text PDF

Genetic gradual reduction of OGT activity unveils the essential role of O-GlcNAc in the mouse embryo.

PLoS Genet

January 2025

Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy.

The reversible glycosylation of nuclear and cytoplasmic proteins (O-GlcNAcylation) is catalyzed by a single enzyme, namely O-GlcNAc transferase (OGT). The mammalian Ogt gene is X-linked, and it is essential for embryonic development and for the viability of proliferating cells. We perturbed OGT's function in vivo by creating a murine allelic series of four single amino acid substitutions, reducing OGT's catalytic activity to a range of degrees.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!