The phototoxic red fluorescent GFP-like protein KillerRed has recently been described. The phototoxicity of KillerRed exceeds that of EGFP by at least 1,000-fold, making it the first fully genetically encoded photosensitizer. KillerRed opens up new possibilities for precise light-induced cell killing and target protein inactivation. Because KillerRed is encoded by a gene, it can be expressed in a spatially and temporally regulated manner, under a chosen promoter, and fused with the desired protein of interest or localization signal. Here we provide a protocol for target protein inactivation in cell culture using KillerRed. As KillerRed is a new tool, the protocol focuses on aspects that will allow users to maximize the potential of this protein, guiding the design of chimeric constructs, recommended control experiments and preferred illumination parameters. The protocol, which describes target protein visualization and subsequent inactivation, is a 2- or 3-d procedure.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nprot.2006.89DOI Listing

Publication Analysis

Top Keywords

target protein
12
protein killerred
8
protein inactivation
8
protein
7
killerred
7
chromophore-assisted light
4
inactivation
4
light inactivation
4
inactivation cali
4
cali phototoxic
4

Similar Publications

Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.

View Article and Find Full Text PDF

Background: Ovarian cancers (OC) and cervical cancers (CC) have poor survival rates. Tumor-infiltrating lymphocytes (TILs) play a pivotal role in prognosis, but shared immune mechanisms remain elusive.

Methods: We integrated single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to explore immune regulation in OC and CC, focusing on the PI3K/AKT pathway and FLT3 as key modulators.

View Article and Find Full Text PDF

Background: Bear bile powder (BBP), a unique animal-derived medicine with anti-inflammatory and antioxidant effects, is used in Shexiang Tongxin dropping pills (STDP), which is applied to treat cardiovascular diseases, including acute myocardial infarction (AMI). The efficacy and compatibility mechanisms of action of BBP in STDP against cardiovascular diseases remain unclear. This study aimed to investigate the compatibility effects of BBP in STDP in rats with AMI.

View Article and Find Full Text PDF

The association between Chlamydia pneumoniae infection and prognosis in lung cancer patients: a prospective study.

BMC Infect Dis

January 2025

Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China.

Background: The prognostic value of Chlamydia pneumoniae (Cpn) infection in postoperative lung cancer patients remains unclear. This study aimed to evaluate the association between Cpn infection and survival in lung cancer patients.

Methods: This study included 309 newly diagnosed primary lung cancer patients from three hospitals in Fuzhou, China.

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) has a high incidence rate and poor prognosis, and currently lacks effective therapies. Recently, peptide-based drugs have shown promise in cancer treatment. In this research, a new endogenous peptide called CBDP1 was discovered in ccRCC and its potential anti-cancer properties were examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!