Alignment and calibration of a focal neurotransmitter uncaging system.

Nat Protoc

Department of Physics, Princeton University, Princeton, New Jersey 08544, USA.

Published: September 2007

Photolysis of caged compounds is a powerful tool for studying subcellular physiological functions. Here we describe protocols for the alignment and calibration of a focal uncaging system. We also report procedures for convenient quantitative calibration of uncaging. Using these methods, we can achieve submicron lateral resolution of photolysis and probe biological function in spines, the smallest signaling compartments of neurons. Initially, the entire alignment procedure takes 4-6 h to perform; periodic fine-tuning of the system takes 1-2 h.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nprot.2006.124DOI Listing

Publication Analysis

Top Keywords

alignment calibration
8
calibration focal
8
uncaging system
8
focal neurotransmitter
4
neurotransmitter uncaging
4
system photolysis
4
photolysis caged
4
caged compounds
4
compounds powerful
4
powerful tool
4

Similar Publications

Interacting Dark Energy after DESI Baryon Acoustic Oscillation Measurements.

Phys Rev Lett

December 2024

School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Sheffield S3 7RH, United Kingdom.

We investigate the implications of the baryon acoustic oscillations measurement released by the Dark Energy Spectroscopic Instrument for interacting dark energy (IDE) models characterized by an energy-momentum flow from dark matter to dark energy. By combining Planck-2018 and Dark Energy Spectroscopic Instrument data, we observe a preference for interactions, leading to a nonvanishing interaction rate ξ=-0.32_{-0.

View Article and Find Full Text PDF

Cavity ring-down spectroscopy (CRDS) is rapidly becoming an invaluable tool to measure hydrogen (δ²H) and oxygen (δO) isotopic compositions in water, yet the long-term accuracy and precision of this technique remain relatively underreported. Here, we critically evaluate one-year performance of CRDS δ²H and δO measurements at ETH Zurich, focusing on high throughput (~200 samples per week) while maintaining required precision and accuracy for diverse scientific investigations. We detail a comprehensive methodological and calibration strategy to optimize CRDS reliability for continuous, high-throughput analysis using Picarro's "Express" mode, an area not extensively explored previously.

View Article and Find Full Text PDF

Molecular structure prediction and homology detection offer promising paths to discovering protein function and evolutionary relationships. However, current approaches lack statistical reliability assurances, limiting their practical utility for selecting proteins for further experimental and in-silico characterization. To address this challenge, we introduce a statistically principled approach to protein search leveraging principles from conformal prediction, offering a framework that ensures statistical guarantees with user-specified risk and provides calibrated probabilities (rather than raw ML scores) for any protein search model.

View Article and Find Full Text PDF

Optimization and Calibration of 384-well Kinetic Ca Mobilization Assays for the Human Transient Receptor Potential Cation Channels TRPM8, TRPV1, and TRPA1.

SLAS Discov

December 2024

Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA 15232, USA. Electronic address:

Development, optimization, and calibration of human transient receptor potential (TRP) channel Ca mobilization assays for TRPM8, TRPV1, and TRPA1 are described. Heterologous expression of hTRPM8 in HEK293T cells was required for anti-TRPM8 antibody staining and TRPM8 agonist induced Ca mobilization signals which were both used to optimize transfection efficiency. FLIPR Calcium 6 dye concentration, loading time, and TRPM8 transfected cell seeding density were optimized and a DMSO tolerance of ≤0.

View Article and Find Full Text PDF

Background: To investigate the risk factors for readmission of elderly patients with coronary artery disease, and to construct and validate a predictive model for readmission risk of elderly patients with coronary artery disease within 3 years by applying machine learning method.

Methods: We selected 575 elderly patients with CHD admitted to the Affiliated Lu'an Hospital of Anhui Medical University from January 2020 to January 2023. Based on whether patients were readmitted within 3 years, they were divided into two groups: those readmitted within 3 years (215 patients) and those not readmitted within 3 years (360 patients).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!