A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Differential Signaling and Hypertrophic Responses in Cyclically Stretched vs Endothelin-1 Stimulated Neonatal Rat Cardiomyocytes. | LitMetric

Differential Signaling and Hypertrophic Responses in Cyclically Stretched vs Endothelin-1 Stimulated Neonatal Rat Cardiomyocytes.

Cell Biochem Biophys

Department of Biochemistry, Cardiovascular Research School COEUR, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.

Published: January 2008

Numerous neurohumoral factors such as endothelin (ET)-1 and angiotensin (Ang) II as well as the stretch stimulus act concertedly in the in vivo overloaded heart in inducing hypertrophy and failure. The primary culture of rat neonatal cardiomyocytes is the only in vitro model that allows the comparative analysis of growth responses and signaling events in response to different stimuli. In the present study, we examined stretched rat cardiomyocytes grown on flexible bottomed culture plates for hypertrophic growth responses (protein synthesis, protein/DNA ratio, and cell volume), F-actin filaments rearrangement (by confocal laser scanning microscopy), and for signaling events (activation of phospholipase C [PLC]-beta, protein kinase C [PKC], mitogenactivated protein [MAP] kinases) and compared these responses with ET-1 (10-8 M)-stimulated cells. Cyclic stretch for 48 h induced hypertrophic growth in cardiomyocytes indicated by increases in the rate of protein synthesis, cell volume, and diameter, which were less pronounced in comparison to stimulation by ET-1. During cyclic stretch, we observed disoriented F-actin, particularly stress-fibers whereas during ET-1 stimulation, Factins rearranged clearly in alignment with sarcomeres and fibers. The upstream part of signaling by cyclic stretch did not follow the PLCbeta-PKC cascade, which, in contrast, was strongly activated during ET-1 stimulation. Cyclic stretch and, to greater extent, ET-1 stimulated downstream signaling through ERK, p38 MAP kinase, and JNK pathways, but the involvement of tyrosine kinase and PI3 kinase-Akt signaling during cyclic stretch could not be proven. Taken together, our results demonstrate that both cyclic stretch and ET-1 induce hypertrophic responses in cardiomyocytes with different effects on organization of F-actin stress fibers in case of stretch. Furthermore, on the short-term basis, cyclical stretch, unlike ET-1, mediates its hypertrophic response not through activation of PLC-beta and PKC but more likely through integrin-linked pathways, which both lead to downstream activation of the MAP kinase family.

Download full-text PDF

Source
http://dx.doi.org/10.1385/cbb:47:1:21DOI Listing

Publication Analysis

Top Keywords

cyclic stretch
24
stretch
9
hypertrophic responses
8
rat cardiomyocytes
8
et-1
8
growth responses
8
signaling events
8
hypertrophic growth
8
protein synthesis
8
cell volume
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!