Wild cotton germplasm resources are largely underutilized because of photoperiod-dependent flowering of "exotic" cottons. The objectives of this work were to explore the genome-wide effect of induced mutation in photoperiod-converted induced cotton mutants, estimating the genetic change between mutant and wild-type cottons using simple sequence repeats (SSRs) as well as understand the pattern of SSR mutation in induced mutagenesis. Three groups of photoperiod-converted radiomutants ((32)P) including their wild-type parental lines, A- and D-genome diploids, and typically grown cotton cultivars were screened with 250 cotton SSR primer pairs. Forty SSRs revealed the same SSR mutation profile in, at least, 2 independent mutant lines that were different from the original wild types. Induced mutagenesis both increased and decreased the allele sizes of SSRs in mutants with the higher mutation rate in SSRs containing dinucleotide motifs. Genetic distance obtained based on 141 informative SSR alleles ranged from 0.09 to 0.60 in all studied cotton genotypes. Genetic distance within all photoperiod-converted induced mutants was in a 0.09-0.25 range. The genetic distance among photoperiod-converted mutants and their originals ranged from 0.28 to 0.50, revealing significant modification of mutants from their original wild types. Typical Gossypium hirsutum cultivar, Namangan-77, revealed mutational pattern similar to induced radiomutants in 40 mutated SSR loci, implying possible pressure to these SSR loci not only in radiomutagenesis but also during common breeding process. Outcomes of the research should be useful in understanding the photoperiod-related mutations, and markers might help in mapping photoperiodic flowering genes in cotton.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jhered/esm007 | DOI Listing |
Biomaterials
December 2024
Institute of Molecular Virology, Ulm University Medical Center, Ulm, 89081, Germany. Electronic address:
Retroviral gene transfer is the preferred method for stable, long-term integration of genetic material into cellular genomes, commonly used to generate chimeric antigen receptor (CAR)-T cells designed to target tumor antigens. However, the efficiency of retroviral gene transfer is often limited by low transduction rates due to low vector titers and electrostatic repulsion between viral particles and cellular membranes. To overcome these limitations, peptide nanofibrils (PNFs) can be applied as transduction enhancers.
View Article and Find Full Text PDFAm J Bot
January 2025
Department of Ecology, Evolution and Behavior, University of Minnesota Twin Cities, St Paul, 55108, MN, USA.
Premise: Prairies are among the most threatened biomes due to changing patterns of climate and land use, yet information on genetic variation in key species that would inform conservation is often limited. We assessed evidence for the geographic scale of population-level variation in growth of two species of prairie clover and of their symbiotic associations with nitrogen-fixing bacteria.
Methods: Seed representing two species, Dalea candida and D.
Sci Rep
January 2025
Department of Electronics Engineering, College of Engineering, Chang Gung University, Taoyuan City, 330, Taiwan.
Reconfigurable modular robots can be used in application domains such as exploration, logistics, and outer space. The robots should be able to assemble and work as a single entity to perform a task that requires high throughput. Selecting an optimum assembly position with minimum distance traveled by robots in an obstacle surrounding the environment is challenging.
View Article and Find Full Text PDFSci Rep
January 2025
Guangxi University of Chinese Medicine School of Yao Medicine, Nanning, 530200, Guangxi, China.
Golden camellia species are endangered species with great ecological significance and economic value in the section Chrysantha of the genus Camellia of the family Theaceae. Literature shows that more than 50 species of golden camellia have been found all over the world, but the exact number remains undetermined due to the complex phylogenetic background, the non-uniform classification criteria, and the presence of various synonyms and homonyms; and phylogenetic relationships among golden camellia species at the gene level are yet to be disclosed. Therefore, it is necessary to investigate the divergence time and phylogenetic relationships between all golden camellia species at the gene level to improve their classification system and achieve accurate identification of them.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Crop Production and Landscape Management, Ebonyi State University, Abakaliki, Nigeria.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!