The Scotia Sea ecosystem is a major component of the circumpolar Southern Ocean system, where productivity and predator demand for prey are high. The eastward-flowing Antarctic Circumpolar Current (ACC) and waters from the Weddell-Scotia Confluence dominate the physics of the Scotia Sea, leading to a strong advective flow, intense eddy activity and mixing. There is also strong seasonality, manifest by the changing irradiance and sea ice cover, which leads to shorter summers in the south. Summer phytoplankton blooms, which at times can cover an area of more than 0.5 million km2, probably result from the mixing of micronutrients into surface waters through the flow of the ACC over the Scotia Arc. This production is consumed by a range of species including Antarctic krill, which are the major prey item of large seabird and marine mammal populations. The flow of the ACC is steered north by the Scotia Arc, pushing polar water to lower latitudes, carrying with it krill during spring and summer, which subsidize food webs around South Georgia and the northern Scotia Arc. There is also marked interannual variability in winter sea ice distribution and sea surface temperatures that is linked to southern hemisphere-scale climate processes such as the El Niño-Southern Oscillation. This variation affects regional primary and secondary production and influences biogeochemical cycles. It also affects krill population dynamics and dispersal, which in turn impacts higher trophic level predator foraging, breeding performance and population dynamics. The ecosystem has also been highly perturbed as a result of harvesting over the last two centuries and significant ecological changes have also occurred in response to rapid regional warming during the second half of the twentieth century. This combination of historical perturbation and rapid regional change highlights that the Scotia Sea ecosystem is likely to show significant change over the next two to three decades, which may result in major ecological shifts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1764830PMC
http://dx.doi.org/10.1098/rstb.2006.1957DOI Listing

Publication Analysis

Top Keywords

scotia sea
16
sea ecosystem
12
scotia arc
12
sea ice
8
flow acc
8
population dynamics
8
rapid regional
8
scotia
7
sea
7
spatial temporal
4

Similar Publications

Massive injection of C depleted carbon to the ocean and atmosphere coincided with major environmental upheaval multiple times in the geological record. For several events, the source of carbon has been attributed to explosive venting of gas produced when magmatic sills intruded organic-rich sediment. The concept mostly derives from studies of a few ancient sedimentary basins with numerous hydrothermal vent complexes (HTVCs) where craters appear to have formed across large areas of the seafloor at the same time, but good examples remain rare in strata younger than the Early Eocene.

View Article and Find Full Text PDF

Multispecies coral reef fisheries are typically managed by local communities who often lack research and monitoring capacity, which prevents estimation of well-defined sustainable reference points to perform locally relevant fishery assessments. Recent research modeling coral reef fisheries globally has estimated multispecies sustainable reference points (i.e.

View Article and Find Full Text PDF

Widespread occurrence and relevance of phosphate storage in foraminifera.

Nature

January 2025

SUGAR, X-star, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan.

Foraminifera are ubiquitous marine protists that intracellularly accumulate phosphate, an important macronutrient in marine ecosystems and in fertilizer potentially leaked into the ocean. Intracellular phosphate concentrations can be 100-1,000 times higher than in the surrounding water. Here we show that phosphate storage in foraminifera is widespread, from tidal flats to the deep sea.

View Article and Find Full Text PDF

Sponges are key ecosystem engineers that shape, structure and enhance the biodiversity of marine benthic communities globally. Sponge aggregations and reefs are recognized as vulnerable marine ecosystems (or VMEs) due to their susceptibility to damage from bottom-contact fishing gears. Ensuring their long-term sustainability, preservation, and ecosystem functions requires the implementation of sound scientific conservation tools.

View Article and Find Full Text PDF

Pathogens play a key role in individual function and the dynamics of wild populations, but the link between pathogens and individual performance has rarely been investigated in the wild. Migrating salmonids offer an ideal study system to investigate how infection with pathogens affects performance given that climate change and fish farming portend increasing prevalence of pathogens in wild populations. To test for effects of pathogen burden on the performance of a migrating salmonid, we paired data from individual brown trout tagged with acoustic accelerometer transmitters and gill biopsies to investigate how pathogen infection affected whole animal activity during the spawning migration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!