A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Speeding up parallel GROMACS on high-latency networks. | LitMetric

Speeding up parallel GROMACS on high-latency networks.

J Comput Chem

Department of Theoretical and Computational Biophysics, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.

Published: September 2007

We investigate the parallel scaling of the GROMACS molecular dynamics code on Ethernet Beowulf clusters and what prerequisites are necessary for decent scaling even on such clusters with only limited bandwidth and high latency. GROMACS 3.3 scales well on supercomputers like the IBM p690 (Regatta) and on Linux clusters with a special interconnect like Myrinet or Infiniband. Because of the high single-node performance of GROMACS, however, on the widely used Ethernet switched clusters, the scaling typically breaks down when more than two computer nodes are involved, limiting the absolute speedup that can be gained to about 3 relative to a single-CPU run. With the LAM MPI implementation, the main scaling bottleneck is here identified to be the all-to-all communication which is required every time step. During such an all-to-all communication step, a huge amount of messages floods the network, and as a result many TCP packets are lost. We show that Ethernet flow control prevents network congestion and leads to substantial scaling improvements. For 16 CPUs, e.g., a speedup of 11 has been achieved. However, for more nodes this mechanism also fails. Having optimized an all-to-all routine, which sends the data in an ordered fashion, we show that it is possible to completely prevent packet loss for any number of multi-CPU nodes. Thus, the GROMACS scaling dramatically improves, even for switches that lack flow control. In addition, for the common HP ProCurve 2848 switch we find that for optimum all-to-all performance it is essential how the nodes are connected to the switch's ports. This is also demonstrated for the example of the Car-Parinello MD code.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcc.20703DOI Listing

Publication Analysis

Top Keywords

all-to-all communication
8
flow control
8
scaling
6
gromacs
5
speeding parallel
4
parallel gromacs
4
gromacs high-latency
4
high-latency networks
4
networks investigate
4
investigate parallel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!