RASSF family proteins are tumor suppressors that are frequently downregulated during the development of human cancer. The best-characterized member of the family is RASSF1A, which is downregulated by promoter methylation in 40-90% of primary human tumors. We now identify and characterize a novel member of the RASSF family, RASSF6. Like the other family members, RASSF6 possesses a Ras Association domain and binds activated Ras. Exogenous expression of RASSF6 promoted apoptosis, synergized with activated K-Ras to induce cell death and inhibited the survival of specific tumor cell lines. Suppression of RASSF6 enhanced the tumorigenic phenotype of a human lung tumor cell line. Furthermore, RASSF6 is often downregulated in primary human tumors. RASSF6 shares some similar overall properties as other RASSF proteins. However, there are significant differences in biological activity between RASSF6 and other family members including a discrete tissue expression profile, cell killing specificity and impact on signaling pathways. Moreover, RASSF6 may play a role in dictating the degree of inflammatory response to the respiratory syncytial virus. Thus, RASSF6 is a novel RASSF family member that demonstrates the properties of a Ras effector and tumor suppressor but exhibits biological properties that are unique and distinct from those of other family members.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.onc.1210440 | DOI Listing |
EMBO Rep
August 2024
Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada.
RAS GTPases bind effectors to convert upstream cues to changes in cellular function. Effectors of classical H/K/NRAS are defined by RBD/RA domains which recognize the GTP-bound conformation of these GTPases, yet the specificity of RBD/RAs for over 160 RAS superfamily proteins remains poorly explored. We have systematically mapped interactions between BRAF and four RASSF effectors, the largest family of RA-containing proteins, with all RAS, RHO and ARF small GTPases.
View Article and Find Full Text PDFAnticancer Agents Med Chem
July 2024
Department of Urology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China.
The Ras association domain family 7 (RASSF7, also named HRC1), a potential tumor-related gene, located on human chromosome 11p15, has been identified as an important member of the N-terminal RASSF family. Whereas, the molecular biological mechanisms of RASSF7 in tumorigenesis remain to be further established. We perform a systematic review of the literature and assessment from PUBMED and MEDLINE databases in this article.
View Article and Find Full Text PDFCell Rep
July 2022
State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China. Electronic address:
Host antiviral immunity suffers strong pressure from rapidly evolving viruses. Identifying host antiviral immune mechanisms has profound implications for developing antiviral strategies. Here, we uncover an essential role for the tumor suppressor Ras-association domain family (RASSF) in Drosophila antiviral response.
View Article and Find Full Text PDFNoncoding RNA Res
June 2022
Department of General Surgery, Kazakhstan Medical University KSPH, Almaty, 050004, Kazakhstan.
Ras-association domain family (RASSF) proteins are tumor suppressors and have gained phenomenal limelight because of their mechanistic role in the prevention/inhibition of carcinogenesis and metastasis. Decades of research have demystified wide ranging activities of RASSF molecules in multiple stages of cancers. Although major fraction of RASSF molecules has tumor suppressive roles, yet there is parallel existence of proof-of-concept about moonlighting activities of RASSF proteins as oncogenes.
View Article and Find Full Text PDFJ Cell Mol Med
June 2022
Department of Surgical Oncology, The Sinopharm Tongmei General Hospital, Datong, China.
The RASSF family proteins have been implicated in the development of human cancers. To date, the expression pattern and biological significance of RASSF4 in colorectal cancers (CRC) have not been fully investigated. In the current study, we explored expression pattern of RASSF4 in 118 CRC specimens and 30 adjacent 'normal' colon tissues by immunohistochemistry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!