The relation between arterial function indices, such as pulse wave velocity and augmentation index with parameters derived from input impedance analysis, is still incompletely understood. Carotid pressure, central flow waveforms, and pulse wave velocity were noninvasively acquired in 2026 apparently healthy, middle-aged subjects (1052 women and 974 men) 35 to 55 years old at inclusion. Input and characteristic impedance, reflection coefficient, the ratio of backward-to-forward pressure amplitude (reflection magnitude), and augmentation index were derived. Pulse wave velocity increased by 15% (from 6.1 to 7.0 m/s) both in men and women. In qualitative terms, input impedance evolved from a pattern indicative of wave transmission and reflection to a pattern more compatible with a windkessel-like system. In women, a decrease in total arterial compliance led to an increased input impedance in the low frequency range, whereas few changes were observed in men. Characteristic impedance did not change with age in women and even decreased in men (P<0.001) and could not be identified as the primary determinant of central pulse pressure. Augmentation index increased with age, as was expected, and was systematically higher in women (P<0.001). Reflection coefficient and reflection magnitude increased with age (P<0.001) without gender differences. We conclude that, in healthy middle-aged subjects, the age-related increase in arterial stiffness (pulse wave velocity) is not fully paralleled by an increase in arterial impedance, suggesting a role for age-dependent modulation of aortic cross-sectional area. Wave reflection increases with age and is not higher in women than in men.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/HYPERTENSIONAHA.106.085480 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!