AI Article Synopsis

  • Patients with malignant glioma experience a significant decline in CD4(+) T cell numbers and their ability to function, largely due to increased regulatory T cell (T(reg)) levels contributing to immunosuppression.
  • A study using a monoclonal antibody to block CTLA-4 in a murine glioma model demonstrated that this treatment led to long-term survival in 80% of mice, without causing additional immune-related issues.
  • The blockade of CTLA-4 restored normal CD4(+) T cell counts and improved their anti-tumor response, enhancing the proliferation of CD4(+)CD25(-) T cells while leaving T(reg) cells unaffected, indicating a specific modulation of the immune response against glioma.

Article Abstract

Purpose: Patients with malignant glioma suffer global compromise of their cellular immunity, characterized by dramatic reductions in CD4(+) T cell numbers and function. We have previously shown that increased regulatory T cell (T(reg)) fractions in these patients explain T-cell functional deficits. Our murine glioma model recapitulates these findings. Here, we investigate the effects of systemic CTLA-4 blockade in this model.

Experimental Design: A monoclonal antibody (9H10) to CTLA-4 was employed against well-established glioma. Survival and risks for experimental allergic encephalomyelitis were assessed, as were CD4(+) T cell numbers and function in the peripheral blood, spleen, and cervical lymph nodes. The specific capacities for anti-CTLA-4 to modify the functions of regulatory versus CD4(+)CD25(-) responder T cells were evaluated.

Results: CTLA-4 blockade confers long-term survival in 80% of treated mice, without eliciting experimental allergic encephalomyelitis. Changes to the CD4 compartment were reversed, as anti-CTLA-4 reestablishes normal CD4 counts and abrogates increases in CD4(+)CD25(+)Foxp3(+)GITR(+) regulatory T cell fraction observed in tumor-bearing mice. CD4(+) T-cell proliferative capacity is restored and the cervical lymph node antitumor response is enhanced. Treatment benefits are bestowed exclusively on the CD4(+)CD25(-) T cell population and not T(regs), as CD4(+)CD25(-) T cells from treated mice show improved proliferative responses and resistance to T(reg)-mediated suppression, whereas T(regs) from the same mice remain anergic and exhibit no restriction of their suppressive capacity.

Conclusions: CTLA-4 blockade is a rational means of reversing glioma-induced changes to the CD4 compartment and enhancing antitumor immunity. These benefits were attained through the conferment of resistance to T(reg)-mediated suppression, and not through direct effects on T(regs).

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-06-2070DOI Listing

Publication Analysis

Top Keywords

ctla-4 blockade
16
cd4+ cell
12
systemic ctla-4
8
glioma-induced changes
8
cell numbers
8
numbers function
8
regulatory cell
8
experimental allergic
8
allergic encephalomyelitis
8
cervical lymph
8

Similar Publications

A mouse model to assess immunotherapy-related colitis.

Methods Cell Biol

January 2025

Laboratory of Translational Oncology, Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain; Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain. Electronic address:

Combined blockade of the immune checkpoints PD-1 and CTLA-4 has shown remarkable efficacy in patients with melanoma, renal cell carcinoma, non-small-cell lung cancer and mesothelioma, among other tumor types. However, a proportion of patients suffer from serious immune-related adverse events (irAEs). In severe cases, a reduction of the doses or the complete cessation of the treatment is required, limiting the antitumor efficacy of these treatments.

View Article and Find Full Text PDF

We report the basal cell cancer (BCC) cohort of the SWOG/NCI 1609 Dual Anti-CTLA-4 & Anti-PD-1 blockade in Rare Tumors (DART), a phase II prospective, multicenter basket trial of nivolumab and ipilimumab. The primary endpoint was objective response rate (ORR) (RECIST v1.1).

View Article and Find Full Text PDF

Engineered ipilimumab variants that bind human and mouse CTLA-4.

MAbs

December 2025

Biotherapeutics and Genetic Medicine, AbbVie, South San Francisco, CA, USA.

Testing of candidate monoclonal antibody therapeutics in preclinical models is an essential step in drug development. Identification of antibody therapeutic candidates that bind their human targets and cross-react to mouse orthologs is often challenging, especially for targets with low sequence homology. In such cases, surrogate antibodies that bind mouse orthologs must be used.

View Article and Find Full Text PDF

Esophageal squamous cell carcinoma (ESCC) is a prevalent and highly lethal malignancy in Asia. Recent advancements in immune checkpoint inhibitors (ICIs) have markedly transformed the systemic therapy landscape for ESCC. Anti-PD-1-based combination with chemotherapy or with ipilimumab, an anti-CTLA-4 antibody, have been established as the new standard first-line treatments for patients with advanced ESCC.

View Article and Find Full Text PDF

Anti-correlation of KLRG1 and PD-1 expression in human tumor CD8 T cells.

Oncotarget

January 2025

Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.

Recently, combination checkpoint therapy of cancer has been recognized as producing additive as opposed to synergistic benefit due in part to positively correlated effects. The potential for uncorrelated or negatively correlated therapies to produce true synergistic benefits has been noted. Whereas the inhibitory receptors PD-1, CTLA-4, TIM-3, LAG-3, and TIGIT have been collectively characterized as exhaustion receptors, another inhibitory receptor KLRG1 was historically characterized as a senescent receptor and received relatively little attention as a potential checkpoint inhibitor target.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!