Arachidonic acid metabolites, the eicosanoids, are key mediators of allergen-induced airway inflammation and remodeling in asthma. The availability of free arachidonate in cells for subsequent eicosanoid biosynthesis is controlled by phospholipase A(2)s (PLA(2)s), most notably cytosolic PLA(2)-alpha. 10 secreted PLA(2)s (sPLA(2)s) have also been identified, but their function in eicosanoid generation is poorly understood. We investigated the role of group X sPLA(2) (sPLA(2)-X), the sPLA(2) with the highest in vitro cellular phospholipolysis activity, in acute and chronic mouse asthma models in vivo. The lungs of sPLA(2)-X(-/-) mice, compared with those of sPLA(2)-X(+/+) littermates, had significant reduction in ovalbumin-induced infiltration by CD4(+) and CD8(+) T cells and eosinophils, goblet cell metaplasia, smooth muscle cell layer thickening, subepithelial fibrosis, and levels of T helper type 2 cell cytokines and eicosanoids. These data direct attention to sPLA(2)-X as a novel therapeutic target for asthma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2118555PMC
http://dx.doi.org/10.1084/jem.20070029DOI Listing

Publication Analysis

Top Keywords

allergen-induced airway
8
airway inflammation
8
inflammation remodeling
8
mouse asthma
8
group x-secreted
4
x-secreted phospholipase
4
phospholipase allergen-induced
4
remodeling mouse
4
asthma
4
asthma model
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!