Hereditary anemias in Hawaii: an update.

Hawaii Med J

Medical Genetic Services, John A Burns School of Medicine, University of Hawaii.

Published: January 1992

Download full-text PDF

Source

Publication Analysis

Top Keywords

hereditary anemias
4
anemias hawaii
4
hawaii update
4
hereditary
1
hawaii
1
update
1

Similar Publications

Disrupted homeostasis in sickle cells: Expanding the comprehension of metabolism adaptation and related therapeutic strategies.

Tissue Cell

January 2025

Department of Biology, Universidade Estadual Paulista (UNESP), São Paulo, Brazil; Campus de Três Lagoas, Universidade Federal de Mato Grosso do Sul (CPTL/UFMS), Mato Grosso do Sul, Brazil. Electronic address:

Sickle cell disease (SCD) is a hereditary hemolytic anemia associated with the alteration of the membrane composition of the sickle erythrocytes, the loss of glycolysis, dysregulation of the pyruvate phosphatase pathway, and changes in nucleotide metabolism of the sickle red blood cell (RBC). This review provides a comprehensive overview of the impact of the presence of Hb S, which leads to the disruption of the normal RBC metabolism. The intricate interplay between the redox and energetic balance in erythrocytic cells, where the glycolysis, pentose phosphate pathway, and methemoglobin reductase pathways are all altered in sickle RBC, is a key focus.

View Article and Find Full Text PDF

Gene therapy for β-thalassemia: current and future options.

Trends Mol Med

January 2025

Université Paris Cité, Imagine Institute, Laboratory of chromatin and gene regulation during development, INSERM UMR 1163, 75015, Paris, France.

Beta-thalassemia is a severe, hereditary blood disorder characterized by anemia, transfusion dependence, reduced life expectancy, and poor quality of life. Allogeneic transplantation of hematopoietic stem cells (HSCs) is the only curative treatment for transfusion-dependent β-thalassemia, but a lack of compatible donors prevents the use of this approach for most patients. Over the past 20 years, the rise of gene therapy and the development of lentiviral vectors and genome-editing tools has extended curative options to a broader range of patients.

View Article and Find Full Text PDF

Hereditary haemorrhagic telangiectasia.

Nat Rev Dis Primers

January 2025

European Reference Network for Rare Multisystemic Vascular Disease (VASCERN), HHT Rare Disease Working Group, Paris, France.

Hereditary haemorrhagic telangiectasia (HHT) is a vascular dysplasia inherited as an autosomal dominant trait and caused by loss-of-function pathogenic variants in genes encoding proteins of the BMP signalling pathway. Up to 90% of disease-causal variants are observed in ENG and ACVRL1, with SMAD4 and GDF2 less frequently responsible for HHT. In adults, the most frequent HHT manifestations relate to iron deficiency and anaemia owing to recurrent epistaxis (nosebleeds) or bleeding from gastrointestinal telangiectases.

View Article and Find Full Text PDF

Background: Hexokinase (HK) deficiency is a rare autosomal recessively inherited disease manifested by chronic nonspherocytic hemolytic anemia. Most patients present with a mild to severe course of the disease (fetal hydrocephalus, neonatal hyperbilirubinemia, severe anemia). We reviewed 37 cases of patients with hexokinase deficiency described so far, focusing on the severity of the disease, clinical presentation, treatment applied, and genetic test results.

View Article and Find Full Text PDF

Unlabelled: Inherited Bone Marrow Failure syndromes account for approximately 25% of cases of aplastic anemia in pediatric patients. Next-generation sequencing (NGS) technologies have allowed the diagnosis of an increasing number of hereditary causes of bone marrow failure.

Objective: To determine the diagnostic yield and clinical concordance of NGS in the diagnosis of a cohort of pediatric patients with bone marrow failure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!