Heat shock proteins (HSPs) play a pivotal role as chaperones in the folding of native and denatured proteins and can help pathogens penetrate host defenses. However, the underlying mechanism(s) of modulation of virulence by HSPs has not been fully determined. In this study, the role of the chaperone ClpL in the pathogenicity of Streptococcus pneumoniae was assessed. A clpL mutant adhered to and invaded nasopharyngeal or lung cells much more efficiently than the wild type adhered to and invaded these cells in vitro, as well as in vivo, although it produced the same amount of capsular polysaccharide. However, the level of secretion of tumor necrosis factor alpha (TNF-alpha) from macrophages infected with the clpL mutant was significantly lower than the level of secretion elicited by the wild type during the early stages of infection. Interestingly, treatment of the human lung epithelial carcinoma A549 and murine macrophage RAW 264.7 cell lines with cytochalasin D, an inhibitor of actin polymerization, increased adherence of the mutant to the host cells. In contrast, cytochalasin D treatment of RAW 264.7 cells decreased TNF-alpha secretion after infection with either the wild type or the mutant. However, pretreatment of cell lines with the actin polymerization activator jasplakinolide reversed these phenotypes. These findings indicate, for the first time, that the ClpL chaperone represses adherence of S. pneumoniae to host cells and induces secretion of TNF-alpha via a mechanism dependent upon actin polymerization during the initial infection stage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1932908PMC
http://dx.doi.org/10.1128/IAI.01716-06DOI Listing

Publication Analysis

Top Keywords

wild type
12
actin polymerization
12
tumor necrosis
8
necrosis factor
8
factor alpha
8
early stages
8
stages infection
8
streptococcus pneumoniae
8
clpl mutant
8
adhered invaded
8

Similar Publications

Background: Thyroid Hormones (THs) critically impact human cancer. Although endowed with both tumor-promoting and inhibiting effects in different cancer types, excess of THs has been linked to enhanced tumor growth and progression. Breast cancer depends on the interaction between bulk tumor cells and the surrounding microenvironment in which mesenchymal stem cells (MSCs) exert powerful pro-tumorigenic activities.

View Article and Find Full Text PDF

Background: The inheritance of the short allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD).

View Article and Find Full Text PDF

Backgrounds: Memory and emotion are especially vulnerable to psychiatric disorders such as post-traumatic stress disorder (PTSD), which is linked to disruptions in serotonin (5-HT) metabolism. Over 90% of the 5-HT precursor tryptophan (Trp) is metabolized via the Trp-kynurenine (KYN) metabolic pathway, which generates a variety of bioactive molecules. Dysregulation of KYN metabolism, particularly low levels of kynurenic acid (KYNA), appears to be linked to neuropsychiatric disorders.

View Article and Find Full Text PDF

HP1 Promotes the Centromeric Localization of ATRX and Protects Cohesion by Interfering Wapl Activity in Mitosis.

Front Biosci (Landmark Ed)

January 2025

The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China.

Background: α thalassemia/mental retardation syndrome X-linked (ATRX) serves as a part of the sucrose nonfermenting 2 (SNF2) chromatin-remodeling complex. In interphase, ATRX localizes to pericentromeric heterochromatin, contributing to DNA double-strand break repair, DNA replication, and telomere maintenance. During mitosis, most ATRX proteins are removed from chromosomal arms, leaving a pool near the centromere region in mammalian cells, which is critical for accurate chromosome congression and sister chromatid cohesion protection.

View Article and Find Full Text PDF

Two pathogen-inducible UDP-glycosyltransferases, UGT73C3 and UGT73C4, catalyze the glycosylation of pinoresinol to promote plant immunity in Arabidopsis.

Plant Commun

January 2025

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao 266237, China. Electronic address:

UDP-glycosyltransferases (UGTs) constitute the largest glycosyltransferase family in the plant kingdom. They are responsible for transferring sugar moieties onto various small molecules to control many metabolic processes. However, their physiological significance in plants is largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!