Differential expression of PKC isoforms in developing zebrafish.

Int J Dev Neurosci

Department of Biological Sciences, University of Alberta, CW-405 Biological Sciences Building, Edmonton, Alberta T6G 2E9, Canada.

Published: May 2007

Protein kinase C isozymes are a biologically diverse group of enzymes known to be involved in a wide variety of cellular processes. They fall into three families (conventional, novel and atypical) depending upon their mode of activation. Several classes of zebrafish neurons have been shown to express PKCalpha during development, but the expression of other isoforms remains unknown. In this study we performed immunohistochemistry to determine if zebrafish express various isoforms of PKC. We used antibodies to test for the presence of enzymes that are thought to be preferentially expressed in the nervous system (PKCgamma, betaII, delta, epsilon, theta and zeta). Here, we show that PKCgamma, epsilon, theta and zeta are expressed in the zebrafish CNS. Anti-PKCgamma labels Rohon-Beard sensory neurons and Mauthner cells. PKCepsilon and zeta staining is widespread in the CNS, and PKCtheta and betaII are expressed in skeletal muscle, especially at intersegmental boundaries. Immunoblot experiments confirm the specificity of the antibodies in zebrafish and indicate that the fish isoforms of PKCgamma, betaII, epsilon and zeta are similar to the mammalian isoforms. Interestingly, PKCtheta appears to be similar to PKCthetaII, which, to date, has been found exclusively in mouse testis, but not in the mammalian CNS. Overall, our findings indicate that several different PKC isoforms are expressed in zebrafish, and that Rohon-Beard, Mauthner cells and muscle fibers preferentially express some isoforms over others.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijdevneu.2007.02.003DOI Listing

Publication Analysis

Top Keywords

pkc isoforms
8
express isoforms
8
pkcgamma betaii
8
epsilon theta
8
theta zeta
8
expressed zebrafish
8
mauthner cells
8
isoforms
7
zebrafish
6
differential expression
4

Similar Publications

The Role of Protein Kinase C During the Differentiation of Stem and Precursor Cells into Tissue Cells.

Biomedicines

November 2024

Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.

Protein kinase C (PKC) plays an essential role during many biological processes including development from early embryonic stages until the terminal differentiation of specialized cells. This review summarizes the current knowledge about the involvement of PKC in molecular processes during the differentiation of stem/precursor cells into tissue cells with a particular focus on osteogenic, adipogenic, chondrogenic and neuronal differentiation by using a comprehensive approach. Interestingly, studies examining the overall role of PKC, or one of its three isoform groups (classical, novel and atypical PKCs), often showed controversial results.

View Article and Find Full Text PDF

Background: Atherosclerosis is a lipid mediated chronic inflammatory disease driven my macrophages (MØ). Protein Kinase C - epsilon (PKCɛ) is is a serine/threonine kinase involved in diverse cellular processes such as migration, growth, differentiation, and survival. PKCɛ is known to act in a context dependent manner within heart, however, its role in atherosclerosis is unknown.

View Article and Find Full Text PDF

Transcriptional regulation in the absence of inositol trisphosphate receptor calcium signaling.

Front Cell Dev Biol

December 2024

MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, United States.

The activation of IP receptor (IPR) Ca channels generates agonist-mediated Ca signals that are critical for the regulation of a wide range of biological processes. It is therefore surprising that CRISPR induced loss of all three IPR isoforms (TKO) in HEK293 and HeLa cell lines yields cells that can survive, grow and divide, albeit more slowly than wild-type cells. In an effort to understand the adaptive mechanisms involved, we have examined the activity of key Ca dependent transcription factors (NFAT, CREB and AP-1) and signaling pathways using luciferase-reporter assays, phosphoprotein immunoblots and whole genome transcriptomic studies.

View Article and Find Full Text PDF
Article Synopsis
  • - Mitochondrial dysfunction and oxidative stress are significant factors in age-related neurodegenerative diseases, and PKCδ isoform in dopaminergic neurons is critical for cell death during these stress events through caspase-3 activation.
  • - The study revealed that upon mitochondrial dysfunction, PKCδ gets activated and moves to the nucleus, where it interacts with Lamin B1, causing nuclear damage and contributing to neuronal cell death.
  • - Experiments showed that blocking PKCδ activation or modifying Lamin B1 can prevent nuclear damage, confirming PKCδ's role as a major player in neurodegenerative processes linked to mitochondrial stress.
View Article and Find Full Text PDF

This study combines high-throughput screening and virtual molecular docking to identify natural compounds targeting PKC in skin aging. Go 6983, a PKC inhibitor, showed potent suppression of MMP-1 transcription. EGCG was one of the candidates that showed it could significantly lower UVB-induced MMP-1 expression in HaCaT cells, and it had a strong affinity for PKCα.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!