The actions of ethanol on gamma-aminobutyric acid type A (GABA(A)) receptors are still highly controversial issues but it appears that some of its pharmacological effects may depend on receptor subunit composition. Prolonged ethanol exposure produces tolerance and dependence and its withdrawal alters GABA(A) receptor subunit gene expression and function. Whereas benzodiazepines are clinically effective in ameliorating ethanol withdrawal symptoms, work in our laboratory showed that benzodiazepines also prevent, in vitro, some of the ethanol withdrawal-induced molecular and functional changes of the GABA(A) receptors. In the present work, we investigated the effects, on such changes, of the benzodiazepine receptor antagonist flumazenil that can positively modulate alpha(4)-containing receptors. We here report that flumazenil prevented both the ethanol withdrawal-induced up-regulation of the alpha(4)-subunit and the increase in its own modulatory action. In contrast, flumazenil did not inhibit ethanol withdrawal-induced decrease in alpha(1)- and delta-subunit expression as well as the corresponding decrease in the modulatory action on GABA(A) receptor function of both the alpha(1)-selective ligand zaleplon and the delta-containing receptor preferentially acting steroid allopregnanolone. These observations are the first molecular and functional evidence that show a selective inhibition by flumazenil of the up-regulation of alpha(4)-subunit expression elicited by ethanol withdrawal.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1471-4159.2007.04512.xDOI Listing

Publication Analysis

Top Keywords

gabaa receptor
12
ethanol withdrawal
12
ethanol withdrawal-induced
12
gene expression
8
receptor function
8
ethanol
8
gabaa receptors
8
receptor subunit
8
molecular functional
8
up-regulation alpha4-subunit
8

Similar Publications

Gene Deficiency of δ Subunit-Containing GABA Receptor in mPFC Lead Learning and Memory Impairment in Mice.

Neurochem Res

January 2025

Laboratory of Chinese Medicine Brain Science, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.

Maintaining GABAergic inhibition within physiological limits in the medial prefrontal cortex (mPFC) is critical for working memory. While synaptic GABAR typically mediate the primary component of mPFC inhibition, the role of extrasynaptic δ-GABAR in working memory remains unclear. To investigate this, we used fiber photometry to examine the effects of δ-GABAR in freely moving mice.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.

Background: Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β (Aβ) plaques and tau tangles in the brain, and neurotransmission dysfunctions. Indeed, our group recently demonstrated that the γ-aminobutyric acid (GABA)ergic system is vulnerable to AD pathology in humans. However, whether this vulnerability is also present in AD rodent models is still unknown.

View Article and Find Full Text PDF

Aims: N-Demethylsinomenine (NDSM) demonstrates good analgesic efficacy in preclinical pain models. However, how NDSM exerts analgesic actions remains unknown.

Methods: We examined the analgesic effects of NDSM using both pain-evoked and pain-suppressed behavioral assays in two persistent pain models.

View Article and Find Full Text PDF

Effects of ketamine and propofol on muscarinic plateau potentials in rat neocortical pyramidal cells.

PLoS One

January 2025

Department of Molecular Medicine, Brain Signalling Laboratory, Institute of Basic Medical Sciences, Section for Physiology, University of Oslo, Oslo, Norway.

Propofol and ketamine are widely used general anaesthetics, but have different effects on consciousness: propofol gives a deeply unconscious state, with little or no dream reports, whereas vivid dreams are often reported after ketamine anaesthesia. Ketamine is an N-methyl-D-aspartate (NMDA) receptor antagonist, while propofol is a γ-aminobutyric-acid (GABAA) receptor positive allosteric modulator, but these mechanisms do not fully explain how these drugs alter consciousness. Most previous in vitro studies of cellular mechanisms of anaesthetics have used brain slices or neurons in a nearly "comatose" state, because no "arousing" neuromodulators were added.

View Article and Find Full Text PDF

Gastrointestinal dysfunction is a severe and common complication in diabetic patients. Some evidence shows that gamma-aminobutyric acid (GABA) and glutamate contribute to diabetic gastrointestinal abnormalities. Therefore, we examined the impact of prolonged treatment with insulin and magnesium supplements on the expression pattern of GABA type A (GABA-A), GABA-B, and N-methyl-D-aspartate (NMDA) glutamate receptors as well as nitric oxide synthase 1 (NOS-1) in the stomach of type 2 diabetic rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!