Ethical controversy in stem cell research arises because current methods to produce embryonic stem cell lines require the destruction of living human embryos. For this reason, there is increasing interest in developing alternative, non-embryonic sources of pluripotent stem cells. This effort is especially important in the US due to the prevailing policy against federal funding of embryo-destructive research. Altered nuclear transfer (ANT) is one of several potential methods to develop alternative sources of pluripotent stem cells. This approach employs the technique of somatic cell nuclear transfer, but the somatic cell nucleus or egg cytoplasm (or both) are first altered before the somatic cell nucleus is transferred into the oocyte. This alteration precludes the coordinated organization and developmental potential that is necessary for the resulting biological entity to be an embryo, but it still allows the entity to generate pluripotent stem cells. Proof-of-principle for one variant of ANT has been established in mice by silencing the functional expression of the gene Cdx2 in the somatic cell nucleus prior to its transfer into an enucleated egg. From the resulting non-embryonic laboratory construct, fully functional pluripotent stem cells were procured. Other more recent studies have suggested the possibility of achieving the same results by preemptively silencing maternally derived Cdx2 messenger RNA in the egg before the act of nuclear transfer. The procedure would produce the equivalent of a tissue culture of pluripotent stem cells. In contrast to the use of embryos 'left over' from clinical in vitro fertilization, ANT could produce pluripotent stem cell lines with an unlimited range of specifically selected and controlled genotypes. Such flexibility would greatly facilitate the study of disease, drug development, and toxicology testing, and may allow the production of therapeutically useful pluripotent stem cells that are immune-compatible. If developed to the point of scientific reliability, ANT would be a valuable research tool for the study of other aspects of cell development and differentiation, including gene expression patterns, imprinting, and cell-cell signaling. ANT would also help to clarify definitions and boundaries that distinguish true organisms from 'biological artifacts' and, thereby, provide moral precedent to guide future progress in developmental biology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2165/00063030-200721020-00002 | DOI Listing |
Adv Sci (Weinh)
January 2025
Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China.
Despite advancements in engineered heart tissue (EHT), challenges persist in achieving accurate dimensional accuracy of scaffolds and maturing human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), a primary source of functional cardiac cells. Drawing inspiration from cardiac muscle fiber arrangement, a three-dimensional (3D)-printed multi-layered microporous polycaprolactone (PCL) scaffold is created with interlayer angles set at 45° to replicate the precise structure of native cardiac tissue. Compared with the control group and 90° PCL scaffolds, the 45° PCL scaffolds exhibited superior biocompatibility for cell culture and improved hiPSC-CM maturation in calcium handling.
View Article and Find Full Text PDFFront Mol Biosci
January 2025
The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China.
Introduction: Bone aging is linked to changes in the lineage differentiation of bone marrow stem cells (BMSCs), which show a heightened tendency to differentiate into adipocytes instead of osteoblasts. The therapeutic potential of irisin in addressing age-related diseases has garnered significant attention. More significantly, irisin has the capacity to enhance bone mass recovery and sustain overall bone health.
View Article and Find Full Text PDFAm J Clin Exp Urol
December 2024
Department of Urology, The Second Affiliated Hospital, Army Military Medical University Chongqing, China.
Background: Cancer stem cells (CSCs) have a powerful tumor initiation ability, which can promote the early dissemination of single disseminated tumor cells (DTCs), leading to tumor progression. SOX2, a pluripotent inducible transcription factor, is key to maintaining self-renewal and pluripotency of prostate cancer stem cells. However, there is a lack of comprehensive understanding of how SOX2 regulates DTCs dormancy and proliferation in the bone marrow microenvironment.
View Article and Find Full Text PDFCurr Res Toxicol
December 2024
University of Central Florida, NanoScience Technology Center, 12424 Research Parkway, Suite 400, Orlando, FL 23826, United States.
Opioids have been the primary method used to manage pain for hundreds of years, however the increasing prescription rate of these drugs in the modern world has led to a public health crisis of overdose related deaths. Naloxone is the current standard treatment for opioid overdose rescue, but it has not been fully investigated for potential off-target toxicity effects. The current methods for pharmaceutical development do not correlate well with pre-clinical animal studies compared to clinical results, creating a need for improved methods for therapeutic evaluation.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary.
Neurons derived from induced pluripotent stem cells (h-iPSC-Ns) provide an invaluable model for studying the physiological aspects of human neuronal development under healthy and pathological conditions. However, multiple studies have demonstrated that h-iPSC-Ns exhibit a high degree of functional and epigenetic diversity. Due to the imprecise characterization and significant variation among the currently available maturation protocols, it is essential to establish a set of criteria to standardize models and accurately characterize and define the developmental properties of human neurons derived from iPSCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!