Detection and quantitation of subgroup C adenovirus DNA in human tissue samples by real-time PCR.

Methods Mol Med

Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.

Published: August 2007

Advances in amplification techniques have revolutionized the ability to detect viruses both quantitatively and qualitatively and to study viral load. Real-time polymerase chain reaction (PCR) amplification depends on the ability to detect and quantify a fluorescent reporter molecule whose signal increases in proportion to the amount of amplification product generated. Recent advances have been made by using probes, such as TaqMan probes, to detect amplified products. Use of these probes offers confirmation of specificity of the PCR product. Here we describe a sensitive real-time PCR assay to quantify subgroup C adenoviral DNA in human lymphocytes derived from mucosal tissues removed in routine tonsillectomy or adenoidectomy. This chapter will describe in detail the methods used for these analyses.

Download full-text PDF

Source
http://dx.doi.org/10.1385/1-59745-166-5:193DOI Listing

Publication Analysis

Top Keywords

dna human
8
real-time pcr
8
ability detect
8
detection quantitation
4
quantitation subgroup
4
subgroup adenovirus
4
adenovirus dna
4
human tissue
4
tissue samples
4
samples real-time
4

Similar Publications

1,3,4-Oxadiazole-based heterocyclic analogs (3a-3m) were synthesized cyclization of Schiff bases with substituted aldehydes in the presence of bromine and acetic acid. The structural clarification of synthesized molecules was carried out with various spectroscopic techniques such as FT-IR,H and C-NMR, UV-visible spectroscopy, and mass spectrometry. antifungal activity was performed against , and and analogs 3g, 3i, and 3m showed potent MIC at 200 µg/ml and excellent ZOI measurements of 17-21 nm.

View Article and Find Full Text PDF

HIV-1 Vif global diversity and possible APOBEC-mediated response since 1980.

Virus Evol

December 2024

U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD 20910, USA.

HIV-1 Vif's principal function is to counter the antiretroviral activities of DNA-editing APOBEC3 cytidine deaminases. Unconstrained APOBEC3 activity introduces premature stop codons in HIV-1 genes and can lead to viral inactivation. To investigate the evolution and diversification of Vif over the HIV-1 pandemic and document evidence of APOBEC3-mediated pressure, we analyzed 4612 publicly available sequences derived from 10 dominant subtypes and circulating recombinant forms (CRFs) using the Hervé platform.

View Article and Find Full Text PDF

Palladium-catalyzed reactions between imidazo[1,2-]pyridine derivatives and 4-bromo-2,2-dialkyl-substituted 2-chromenes under microwave irradiation at 100 W, 120 °C for 20-30 min provided a series of new 3-(2,2-dialkyl-2-chromen-4-yl)-2-phenylimidazo[1,2-]pyridine derivatives in good to excellent yields. The structures of the synthesized compounds were confirmed through spectroscopic techniques (NMR and HRMS). The X-ray single-crystal structure of compound 16e was also determined.

View Article and Find Full Text PDF

Background: Donor-derived cell-free DNA (dd-cfDNA) is a promising non-invasive biomarker for detecting graft injury in solid organ transplant recipients. Elevated dd-cfDNA levels are strongly associated with rejection and graft injury, especially antibody-mediated rejection (ABMR). While donor-specific antibodies (dnDSA) are crucial in ABMR, the relationship between dd-cfDNA levels and dnDSA features, such as DSA category, MFI and HLA target loci, remains unclear.

View Article and Find Full Text PDF

Clinical evaluation of a multiplex droplet digital PCR for diagnosing suspected bloodstream infections: a prospective study.

Front Cell Infect Microbiol

January 2025

Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.

Background: Though droplet digital PCR (ddPCR) has emerged as a promising tool for early pathogen detection in bloodstream infections (BSIs), more studies are needed to support its clinical application widely due to different ddPCR platforms with discrepant diagnostic performance. Additionally, there is still a lack of clinical data to reveal the association between pathogen loads detected by ddPCR and corresponding BSIs.

Methods: In this prospective study, 173 patients with suspected BSIs were enrolled.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!