Intestinal pathogenic Escherichia coli represents a global health problem for mammals, including humans. At present, diarrheagenic E. coli bacteria are grouped into seven major pathotypes that differ in their virulence factor profiles, severity of clinical manifestations, and prognosis. In this study, we developed and evaluated a one-step multiplex PCR (MPCR) for the straightforward differential identification of intestinal pathotypes of E. coli. The specificity of this novel MPCR was validated by using a subset of reference strains and further confirmed by PCR-independent pheno- and genotypic characterization. Moreover, we tested 246 clinical E. coli isolates derived from diarrhea patients from several distinct geographic regions. Interestingly, besides strains belonging to the defined and well-described pathotypes, we identified five unconventional strains expressing intermediate virulence factor profiles. These strains have been further characterized and appear to represent intermediate strains carrying genes and expressing factors associated with enteropathogenic E. coli, Shiga toxin-producing E. coli, enterotoxigenic E. coli, and enteroaggregative E. coli alike. These strains represent further examples of the extraordinary plasticity of the E. coli genome. Moreover, this implies that the important identification of specific pathotypes has to be based on a broad matrix of indicator genes. In addition, the presence of intermediate strains needs to be accounted for.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1907121 | PMC |
http://dx.doi.org/10.1128/AEM.02855-06 | DOI Listing |
J Clin Lab Anal
January 2025
Department of Microbiology, Faculty of Sciences, University of Aleppo, Aleppo, Syria.
Background: Pseudomonas aeruginosa is a significant opportunistic pathogen, especially in hospital-acquired infections, with plasmid-mediated fluoroquinolone resistance posing a major healthcare threat. This research aimed to isolate fluoroquinolone-resistant P. aeruginosa from patients at Aleppo University Hospital, assess the prevalence of fluoroquinolone resistance, confirm molecular identity, identify plasmid-associated resistance genes, and investigate virulence factors.
View Article and Find Full Text PDFFront Pediatr
January 2025
Department of Hematology, Aerospace Center Hospital, Beijing, China.
Introduction: Hypervirulent carbapenem-resistant Klebsiella pneumoniae (hv-CRKP) poses an increasing public health risk due to its high treatment difficulty and associated mortality, especially in bone marrow transplant (BMT) patients. The emergence of strains with multiple resistance mechanisms further complicates the management of these infections.
Methods: We isolated and characterized a novel ST11-KL64 hv-CRKP strain from a pediatric bone marrow transplantation patient.
Virulence
December 2025
Department of Oral Microbiology, College of Dentistry, Kyung Hee University, Seoul, Republic of Korea.
has emerged as a notable pathogen in canine periodontal disease, akin to in human periodontitis. This review examines the initial isolation, phylogenetic analysis, habitat, host range, relationships with host health status and age, and key pathogenic determinants, including fimbriae, proteases, citrullinating enzyme, and lipopolysaccharide. Control strategies discussed include polyphosphate to disrupt haeme/iron utilization, clindamycin with interferon alpha to reduce bacterial load and enhance the immune response, and a protease inhibitor.
View Article and Find Full Text PDFBMC Med Genomics
January 2025
Kilimanjaro Christian Medical University College, Kilimanjaro, Tanzania.
Background: Methicillin-resistant Staphylococcus aureus (MRSA) is a formidable public scourge causing worldwide mild to severe life-threatening infections. The ability of this strain to swiftly spread, evolve, and acquire resistance genes and virulence factors such as pvl genes has further rendered this strain difficult to treat. Of concern, is a recently recognized ability to resist antiseptic/disinfectant agents used as an essential part of treatment and infection control practices.
View Article and Find Full Text PDFInt Microbiol
January 2025
Department of Clinical Laboratory, Zibo Central Hospital, 54 Gongqingtuan West Road, Zhangdian District, Zibo, Shandong, 255000, P.R. China.
Clostridioides difficile has rapidly become a major cause of nosocomial infectious diarrhea worldwide due to the misuse of antibiotics. Our previous study confirmed that RT046/ST35 strain is associated with more severe clinical symptoms compared to RT012/ST54 strain. We conducted genome comparison of the RT046/ST35 and RT012/ST54 strains using whole-genome sequencing technology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!