Ignicoccus hospitalis is an autotrophic hyperthermophilic archaeon that serves as a host for another parasitic/symbiotic archaeon, Nanoarchaeum equitans. In this study, the biosynthetic pathways of I. hospitalis were investigated by in vitro enzymatic analyses, in vivo (13)C-labeling experiments, and genomic analyses. Our results suggest the operation of a so far unknown pathway of autotrophic CO(2) fixation that starts from acetyl-coenzyme A (CoA). The cyclic regeneration of acetyl-CoA, the primary CO(2) acceptor molecule, has not been clarified yet. In essence, acetyl-CoA is converted into pyruvate via reductive carboxylation by pyruvate-ferredoxin oxidoreductase. Pyruvate-water dikinase converts pyruvate into phosphoenolpyruvate (PEP), which is carboxylated to oxaloacetate by PEP carboxylase. An incomplete citric acid cycle is operating: citrate is synthesized from oxaloacetate and acetyl-CoA by a (re)-specific citrate synthase, whereas a 2-oxoglutarate-oxidizing enzyme is lacking. Further investigations revealed that several special biosynthetic pathways that have recently been described for various archaea are operating. Isoleucine is synthesized via the uncommon citramalate pathway and lysine via the alpha-aminoadipate pathway. Gluconeogenesis is achieved via a reverse Embden-Meyerhof pathway using a novel type of fructose 1,6-bisphosphate aldolase. Pentosephosphates are formed from hexosephosphates via the suggested ribulose-monophosphate pathway, whereby formaldehyde is released from C-1 of hexose. The organism may not contain any sugar-metabolizing pathway. This comprehensive analysis of the central carbon metabolism of I. hospitalis revealed further evidence for the unexpected and unexplored diversity of metabolic pathways within the (hyperthermophilic) archaea.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1913412 | PMC |
http://dx.doi.org/10.1128/JB.00047-07 | DOI Listing |
Life (Basel)
January 2025
Department of Biology, University of Crete, Voutes University Campus, GR-70013 Heraklion, Crete, Greece.
This study investigates the resilience of the unicellular green microalga to extreme atmospheric conditions simulating those of Mars, Jupiter, and Titan. Using Earth as a control, experiments were conducted under autotrophic and mixotrophic conditions to evaluate the organism's photosynthetic efficiency, oxygen production, and biomass growth over 2, 5, and 12 days. Photosynthetic performance was analyzed through chlorophyll a fluorescence induction (JIP-test), metabolic activity via gas chromatography, and biomass accumulation measurements.
View Article and Find Full Text PDFBioresour Technol
January 2025
Department of Biology, University of Padova, 35131 Padova, Italy. Electronic address:
The fermentation process in alcoholic beverage production converts sugars into ethanol and CO, releasing significant amounts of greenhouse gases. Here, Cupriavidus necator DSM 545 was grown autotrophically using gas derived from alcoholic fermentation, using a fed-batch bottle system. Nutrient starvation was applied to induce intracellular accumulation of poly(3-hydroxybutyrate) (PHB), a bioplastic polymer, for bioconversion of CO-rich waste gas into PHB.
View Article and Find Full Text PDFBiotechnol Adv
January 2025
State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; College of Life and Health Sciences, Northeastern University, Shenyang 110169, China. Electronic address:
Ralstonia eutropha H16, a facultative chemolithoautotrophic Gram-negative bacterium, demonstrates remarkable metabolic flexibility by utilizing either diverse organic substrates or CO as the sole carbon source, with H serving as the electron donor under aerobic conditions. The capacity of carbon and energy metabolism of R. eutropha H16 enabled development of synthetic biology technologies and strategies to engineer its metabolism for biosynthesis of value-added chemicals.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Key Laboratory of Medicinal Plant and Animal Resources of the Qinghai-Tibetan Plateau in Qinghai Province, Academy of Plateau Science and Sustainability, School of Life Science, Qinghai Normal University, Xining, China.
Unlabelled: The biodiversity of CO-assimilating bacterial communities is pivotal for carbon sequestration in agricultural systems. Changes in the diversity, structure, and activity of the soil chemolithoautotrophic bacteria were examined in four agricultural areas, Dulan (DL), Gonghe (GH), Huzhu (HZ), and Datong (DT) counties in Qinghai Province, where wheat, oilseed rape, and barley were planted. This process was performed using Illumina amplicon sequencing of the ribulose-1,5-bisphosphatecarboxylase/oxygenase (RubisCO) gene ( Form I) and activity data.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
December 2024
Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Central Ward, Hamamatsu, Shizuoka, Japan.
Microalgae have been explored as a viable alternative food source. Among them, Euglena gracilis stands out as a promising single-cell algae. However, the challenge lies in developing more efficient and cost-effective methods for industrial mass production of Euglena gracilis under controlled culture conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!