TGF-beta-neutralizing antibodies improve pulmonary alveologenesis and vasculogenesis in the injured newborn lung.

Am J Physiol Lung Cell Mol Physiol

Department of Anesthesia and Critical Care, Massachusetts General Hospital, Boston, and Harvard Medical School, Cambridge, Massachusetts, USA.

Published: July 2007

Pulmonary injury is associated with the disruption of alveologenesis in the developing lung and causes bronchopulmonary dysplasia (BPD) in prematurely born infants. Transforming growth factor (TGF)-beta is an important regulator of cellular differentiation and early lung development, and its levels are increased in newborn lung injury. Although overexpression of TGF-beta in the lungs of newborn animals causes pathological features that are consistent with BPD, the role of endogenous TGF-beta in the inhibition of the terminal stage of lung development is incompletely understood. In this investigation, the hypothesis that O(2)-induced injury of the maturing lung is associated with TGF-beta-mediated disruption of alveologenesis and microvascular development was tested using a murine model of BPD. Here we report that treatment of developing mouse lungs with TGF-beta-neutralizing antibodies attenuates the increase in pulmonary cell phospho-Smad2 nuclear localization, which is indicative of augmented TGF-beta signaling, associated with pulmonary injury induced by chronic inhalation of 85% oxygen. Importantly, the neutralization of the abnormal TGF-beta activity improves quantitative morphometric indicators of alveologenesis, extracellular matrix assembly, and microvascular development in the injured developing lung. Furthermore, exposure to anti-TGF-beta antibodies is associated with improved somatic growth in hyperoxic mouse pups and not with an increase in pulmonary inflammation. These studies indicate that excessive pulmonary TGF-beta signaling in the injured newborn lung has an important role in the disruption of the terminal stage of lung development. In addition, they suggest that anti-TGF-beta antibodies may be an effective therapy for preventing some important developmental diseases of the newborn lung.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplung.00389.2006DOI Listing

Publication Analysis

Top Keywords

newborn lung
16
lung development
12
lung
10
tgf-beta-neutralizing antibodies
8
injured newborn
8
pulmonary injury
8
disruption alveologenesis
8
developing lung
8
terminal stage
8
stage lung
8

Similar Publications

Neonatal and Pediatric Pulmonary Vascular Disease.

Radiol Clin North Am

March 2025

Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.

Pediatric patients are affected by a wide variety of pulmonary vascular diseases ranging from congenital anomalies diagnosed at birth to acquired diseases that present later in childhood and into adolescence. While some pulmonary vascular diseases present similarly to those seen in adults, other forms are unique to children. Knowledge of the characteristic imaging features of these diseases is essential to facilitate prompt diagnosis and guide clinical management.

View Article and Find Full Text PDF

Disrupted neonatal lung alveologenesis often leads to bronchopulmonary dysplasia (BPD), the most common chronic lung disease in children. The inhibition of type 2 alveolar (AT2) cell proliferation plays an important role in the arrest of alveologenesis. However, the mechanism of AT2 cell proliferation retardation in BPD is still not fully elucidated.

View Article and Find Full Text PDF

L-citrulline (L-CIT), a precursor to L-arginine (L-ARG), is a key contributor to the nitric oxide (NO) signaling pathway. Endothelial dysfunction, characterized by deficient nitric oxide synthesis, is implicated in the pathogenesis of various neonatal conditions such as necrotizing enterocolitis (NEC) and bronchopulmonary dysplasia (BPD) associated pulmonary hypertension (PH). This review summarizes the current evidence around the possible role of L-CIT supplementation in the treatment of these conditions.

View Article and Find Full Text PDF

Background: Bronchopulmonary dysplasia (BPD) is a chronic lung condition of premature neonates, yet without an established pharmacological treatment. The BPD rabbit model exposed to 95% oxygen has been used in recent years for drug testing. However, the toxicity of the strong hyperoxic hit precludes a longer-term follow-up due to high mortality after the first week of life.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is a major contributor to morbidity and mortality in infants. We developed an in vitro model of human respiratory infection to study cellular immune responses to RSV in infants, children, and adults. The model includes human lung epithelial A549 cells or human fetal lung fibroblasts infected with a clinical strain of RSV at a multiplicity of infection of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!