Native states of proteins are flexible, populating more than just the unique native conformation. The energetics and dynamics resulting from this conformational ensemble are inherently linked to protein function and regulation. Proteolytic susceptibility is one feature determined by this conformational energy landscape. As an attempt to investigate energetics of proteins on a proteomic scale, we challenged the Escherichia coli proteome with extensive proteolysis and determined which proteins, if any, have optimized their energy landscape for resistance to proteolysis. To our surprise, multiple soluble proteins survived the challenge. Maltose binding protein, a survivor from thermolysin digestion, was characterized by in vitro biophysical studies to identify the physical origin of proteolytic resistance. This experimental characterization shows that kinetic stability is responsible for the unusual resistance in maltose binding protein. The biochemical functions of the identified survivors suggest that many of these proteins may have evolved extreme proteolytic resistance because of their critical roles under stressed conditions. Our results suggest that under functional selection proteins can evolve extreme proteolysis resistance by modulating their conformational energy landscapes without the need to invent new folds, and that proteins can be profiled on a proteomic scale according to their energetic properties by using proteolysis as a structural probe.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857998 | PMC |
http://dx.doi.org/10.1016/j.jmb.2007.02.091 | DOI Listing |
Proteomics
December 2024
Institute of Health Services Research in Dentistry, University of Münster, Münster, Germany.
Periodontitis, characterized by inflammatory loss of tooth-supporting tissues associated with biofilm, is among the most prevalent chronic diseases globally, affecting approximately 50% of the adult population to a moderate extent and cases of severe periodontitis surpassing the one billion mark. Proteomics analyses of blood, serum, and oral fluids have provided valuable insights into the complex processes occurring in the inflamed periodontium. However, until now, proteome analyses have been primarily limited to small groups of diseased versus healthy individuals.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
April 2025
Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, and Cancer Center, School of Medicine, Tongji University, Shanghai, China.
Rationale: The performance of the capillary column directly impacts the separation efficiency of complex sample in liquid chromatography-mass spectrometry-based proteomics studies. The hydraulic packing system offers an effective solution by reducing packing time and expediting the preparation process of column preparation. However, its operational complexity and strict parameter regulation requirements hinder efficient application.
View Article and Find Full Text PDFSci Rep
December 2024
Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), Albinusdreef 2, 2333ZA, Leiden, Zuid-Holland, The Netherlands.
Antibody glycosylation patterns can affect antibody functionality and thereby contribute to protection against invading pathogens. During pregnancy, maternal antibodies can be transferred through the placenta and contribute to modulating both the mother's and her child's immune responses. Although several studies of IgG glycosylation during pregnancy have been carried out, very few cohorts studied were from sub-Saharan Africa, where exposure to microorganisms and parasites is high.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
Biological systems are complex, encompassing intertwined spatial, molecular and functional features. However, methodological constraints limit the completeness of information that can be extracted. Here, we report the development of INSIHGT, a non-destructive, accessible three-dimensional (3D) spatial biology method utilizing superchaotropes and host-guest chemistry to achieve homogeneous, deep penetration of macromolecular probes up to centimeter scales, providing reliable semi-quantitative signals throughout the tissue volume.
View Article and Find Full Text PDFISME Commun
January 2024
Otto-von-Guericke University Magdeburg, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Saxony-Anhalt, Germany.
A comprehensive understanding of microbial community dynamics is fundamental to the advancement of environmental microbiology, human health, and biotechnology. Metaproteomics, defined as the analysis of all proteins present within a microbial community, provides insights into these complex systems. Microbial adaptation and activity depend to an important extent on newly synthesized proteins (nP), however, the distinction between nP and bulk proteins is challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!