In the French Canadian population six mutations appear to be responsible for about 85% of FH cases. Two of these mutations are large deletions. The most prevalent deletion is a >15 kb deletion of the promoter and first exon; the second, a 5 kb deletion that removes exons 2 and 3. The high frequency of these deletions in the French Canadian population has been attributed to a founder effect. Other mutations are present in the population but at a much lower prevalence. We recently identified two new large deletions in FH patients of French Canadian descent. Carriers of the new deletions were identified because of an unusual pattern of band migration on Southern blots. We have identified and sequenced the deletions' boundaries. The first deletion covers 3813 bp and removes exons 7 and 8. The second deletion covers 5994 bp and removes exons 3-6. These deletions have not been previously reported. They would have been missed if a PCR-based method had been used instead of Southern blot analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.atherosclerosis.2007.02.026DOI Listing

Publication Analysis

Top Keywords

large deletions
12
french canadian
12
removes exons
12
canadian population
8
second deletion
8
deletion covers
8
deletions
5
deletion
5
deletions low
4
low density
4

Similar Publications

An InDel variant in the promoter of the NAC transcription factor MdNAC18.1 plays a major role in apple fruit ripening.

Plant Cell

December 2024

Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China.

A complex regulatory network governs fruit ripening, but natural variations and functional differentiation of fruit ripening genes remain largely unknown. Utilizing a genome-wide association study (GWAS), we identified the NAC family transcription factor MdNAC18.1, whose expression is closely associated with fruit ripening in apple (Malus × domestica Borkh.

View Article and Find Full Text PDF

In , the causative agent of Lyme disease, differential gene expression is primarily governed by the alternative sigma factor RpoS (σ). Understanding the regulation of RpoS is crucial for elucidating how is maintained throughout its enzootic cycle. Our recent studies have shown that the homolog of Fur/PerR repressor/activator BosR functions as an RNA-binding protein that controls the mRNA stability.

View Article and Find Full Text PDF

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children, presenting with heterogeneous clinical and molecular subtypes. While gene fusions are predominantly associated with alveolar RMS, spindle cell RMS, especially congenital and intraosseous variants, are also linked to specific gene fusions. Furthermore, recently, FGFR1 kinase-driven RMSs were published.

View Article and Find Full Text PDF

Glucose-6-phosphate dehydrogenase (G6PD) is the rate-limiting enzyme in the pentose phosphate pathway (PPP) in glycolysis. Glucose metabolism is closely implicated in the regulation of mitophagy, a selective form of autophagy for the degradation of damaged mitochondria. The PPP and its key enzymes such as G6PD possess important metabolic functions, including biosynthesis and maintenance of intracellular redox balance, while their implication in mitophagy is largely unknown.

View Article and Find Full Text PDF

The Evolution of Immunosuppressive Therapy in Pig-to-Nonhuman Primate Organ Transplantation.

Transpl Int

January 2025

Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.

An overview is provided of the evolution of strategies towards xenotransplantation during the past almost 40 years, focusing on advances in gene-editing of the organ-source pigs, pre-transplant treatment of the recipient, immunosuppressive protocols, and adjunctive therapy. Despite initial challenges, including hyperacute rejection resulting from natural (preformed) antibody binding and complement activation, significant progress has been made through gene editing of the organ-source pigs and refinement of immunosuppressive regimens. Major steps were the identification and deletion of expression of the three known glycan xenoantigens on pig vascular endothelial cells, the transgenic expression of human "protective" proteins, e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!