Cytochrome b(558) is the catalytic core of the phagocyte NADPH oxidase that mediates the production of bactericidal reactive oxygen species. Cytochrome b(558) is formed by two subunits gp91-phox and p22-phox (1/1), non-covalently associated. Its activation depends on the interaction with cytosolic regulatory proteins (p67-phox, p47-phox, p40-phox and Rac) leading to an electron transfer from NADPH to molecular oxygen and to the release of superoxide anions. Several studies have suggested that the activation process was linked to a change in cytochrome b(558) conformation. Recently, we confirmed this hypothesis by isolating cytochrome b(558) in a constitutively active form. To characterize active and inactive cytochrome b(558) conformations, we produced four novel monoclonal antibodies (7A2, 13B6, 15B12 and 8G11) raised against a mixture of cytochrome b(558) purified from both resting and stimulated neutrophils. The four antibodies labeled gp91-phox and bound to both native and denatured cytochrome b(558). Interestingly, they were specific of extracellular domains of the protein. Phage display mapping combined to the study of recombinant gp91-phox truncated forms allowed the identification of epitope regions. These antibodies were then employed to investigate the NADPH oxidase activation process. In particular, they were shown to inhibit almost completely the NADPH oxidase activity reconstituted in vitro with membrane and cytosol. Moreover, flow cytometry analysis and confocal microscopy performed on stimulated neutrophils pointed out the capacity of the monoclonal antibody 13B6 to bind preferentially to the active form of cytochrome b(558). All these data suggested that the four novel antibodies are potentially powerful tools to detect the expression of cytochrome b(558) in intact cells and to analyze its membrane topology. Moreover, the antibody 13B6 may be conformationally sensitive and used as a probe for identifying the active NADPH oxidase complex in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biochi.2007.01.010 | DOI Listing |
J Biol Chem
December 2024
Institut de Chimie Physique, UMR 8000, CNRS, Université Paris Saclay, Orsay, France. Electronic address:
Biosensors (Basel)
May 2023
Department of Chemical Engineering, Ariel University, Kyriat-ha-Mada, Ariel 4070000, Israel.
L-Lactate is an indicator of food quality, so its monitoring is essential. Enzymes of L-Lactate metabolism are promising tools for this aim. We describe here some highly sensitive biosensors for L-Lactate determination which were developed using flavocytochrome b (Fc) as a bio-recognition element, and electroactive nanoparticles (NPs) for enzyme immobilization.
View Article and Find Full Text PDFInt J Mol Sci
March 2023
Department of Immunology, Biology Faculty, Lomonosov Moscow State University, Lenin Hills 1/12, 119234 Moscow, Russia.
Neutrophils release decondensed chromatin or extracellular traps (NETs) in response to various physiological and pharmacological stimuli. Apart from host defensive functions, NETs play an essential role in the pathogenesis of various autoimmune, inflammatory, and malignant diseases. In recent years, studies have been performed on photo-induced NET formation, mainly activated by UV radiation.
View Article and Find Full Text PDFInt J Mol Sci
January 2022
Institut de Chimie Physique UMR 8000, CNRS, Université Paris-Saclay, 91405 Orsay, France.
Neutrophils play a very key role in the human immune defense against pathogenic infections. The predominant players in this role during the activation of neutrophils are the release of cytotoxic agents stored in the granules and secretory vesicles and the massive production of reactive oxygen species (ROS) initiated by the enzyme NADPH oxidase. In addition, in living organisms, cells are continuously exposed to endogenous (inflammations, elevated neutrophil presence in the vicinity) and exogenous ROS at low and moderate levels (travels by plane, radiotherapy, space irradiation, blood banking, etc.
View Article and Find Full Text PDFJ Clin Immunol
January 2022
Department of Pediatrics (Allergy and Immunology Unit), Postgraduate Institute of Medical Education and Research, Chandigarh, India.
Background: Chronic granulomatous disease (CGD) is a primary immunodeficiency disorder of phagocytes due to defects in any of the five subunits of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex. An initial diagnosis of CGD is made by flow cytometry-based dihydrorhodamine assay or nitro blue tetrazolium test, which is further confirmed by molecular assays. Expression of five subunits of NADPH oxidase components by either flow cytometric or western blot analysis provides clues toward the potential gene targets which are subsequently confirmed by various genetic assays.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!