Background/aims: We analyzed the expression of platelet-derived growth factor D (PDGF-D) in an experimental bile duct-ligated (BDL) rat model and assessed its biological function in cultured hepatic stellate cells (HSC) and myofibroblasts (MFB).
Methods: The mRNA for PDGF-A, -B, -C, -D and for PDGF receptor-alpha and -beta chains (PDGFRalpha and PDGFRbeta) in normal and fibrotic rat livers was assessed quantitatively. Protein levels of PDGF-D were quantified by immunoblotting and immunohistochemistry.
Results: The relative mRNA expression of all PDGF isoforms and receptors upregulated upon BDL and PDGF-A, -B and -D expression was significantly higher than that of PDGF-C. PDGF-D and PDGFRbeta protein also increased markedly. Immunostaining revealed that PDGF-D is localized along the fibrotic septa of the periportal- and perisinusoidal areas. Besides PDGF-B, PDGF-D is the second most potent PDGF isoform in PDGFRbeta signaling within HSC/MFB, evidenced by PDGFRbeta autophosphorylation and activation of the downstream signaling molecules ERK1/2-, JNK-, p38 MAPK, and PKB/Akt while PDGF-C effects were minimal. PDGF-D exerted mitogenic and fibrogenic effects in both cultured HSC and MFB comparable to PDGF-B but PDGF-A and -C showed only marginal fibrogenic effects.
Conclusions: PDGF-D possesses potential pathogenetic properties for HSC activation and matrix remodeling in liver fibrosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhep.2007.01.029 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!