Gastrulation in the cnidarian Nematostella vectensis occurs via invagination not ingression.

Dev Biol

Kewalo Marine Laboratory, Pacific Biomedical Research Center, University of Hawai'i Honolulu, HI 96813, USA.

Published: May 2007

Gastrulation is a central event in metazoan development, involving many cellular behaviors including invagination, delamination, and ingression. Understanding the cell biology underlying gastrulation in many different taxa will help clarify the evolution of gastrulation mechanisms. Gastrulation in the anthozoan cnidarian Nematostella vectensis has been described as a combination of invagination and unipolar ingression through epithelial to mesenchymal transitions (EMT), possibly controlled by snail genes, important regulators of EMT in other organisms. Our examination, however, fails to reveal evidence of ingressing cells. Rather, we observe that endodermal cells constrict their apices, adopting bottle-like morphologies especially pronounced adjacent to the blastopore lip. They retain apical projections extending to the archenteron throughout gastrulation. Basally, they form actin-rich protrusions, including interdigitating filopodia that may be important in pulling the ectodermal and endodermal cells together. Endodermal cells retain cell-cell junctions while invaginating, and are organized throughout development. Never is the blastocoel filled by a mass of mesenchyme. Additionally, injection of splice-blocking morpholinos to Nematostella snail genes does not result in a phenotype despite dramatically reducing wild-type transcript, and overexpression of Snail-GFP in different clonal domains has no effect on cell behavior. These data indicate that EMT is not a major factor during gastrulation in Nematostella.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ydbio.2007.02.044DOI Listing

Publication Analysis

Top Keywords

endodermal cells
12
cnidarian nematostella
8
nematostella vectensis
8
snail genes
8
gastrulation
7
gastrulation cnidarian
4
nematostella
4
vectensis occurs
4
occurs invagination
4
invagination ingression
4

Similar Publications

Heparan sulfate regulates the fate decisions of human pluripotent stem cells.

Stem Cell Reports

December 2024

Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA; Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA 02142, USA; Koch Institute for Integrative Cancer Research at MIT, 500 Main St, Cambridge, MA 02142, USA. Electronic address:

Heparan sulfate (HS) is an anionic polysaccharide generated by all animal cells, but our understanding of its roles in human pluripotent stem cell (hPSC) self-renewal and differentiation is limited. We derived HS-deficient hPSCs by disrupting the EXT1 glycosyltransferase. These EXT1 hPSCs maintain self-renewal and pluripotency under standard culture conditions that contain high levels of basic fibroblast growth factor(bFGF), a requirement for sufficient bFGF signaling in the engineered cells.

View Article and Find Full Text PDF

Chemically defined and growth factor-free system for highly efficient endoderm induction of human pluripotent stem cells.

Stem Cell Reports

December 2024

School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Shandong 266071, China; Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China. Electronic address:

Definitive endoderm (DE) derived from human pluripotent stem cells (hPSCs) holds great promise for cell-based therapies and drug discovery. However, current DE differentiation methods required undefined components and/or expensive recombinant proteins, limiting their scalable manufacture and clinical use. Homogeneous DE differentiation in defined and recombinant protein-free conditions remains a major challenge.

View Article and Find Full Text PDF

Single-cell analysis of bidirectional reprogramming between early embryonic states identify mechanisms of differential lineage plasticities in mice.

Dev Cell

December 2024

Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA. Electronic address:

Two distinct lineages, pluripotent epiblast (EPI) and primitive (extra-embryonic) endoderm (PrE), arise from common inner cell mass (ICM) progenitors in mammalian embryos. To study how these sister identities are forged, we leveraged mouse embryonic stem (ES) cells and extra-embryonic endoderm (XEN) stem cells-in vitro counterparts of the EPI and PrE. Bidirectional reprogramming between ES and XEN coupled with single-cell RNA and ATAC-seq analyses showed distinct rates, efficiencies, and trajectories of state conversions, identifying drivers and roadblocks of reciprocal conversions.

View Article and Find Full Text PDF

Liver tissues, composed of hepatocytes, cholangiocytes, stellate cells, Kupffer cells, and sinusoidal endothelial cells, are differentiated from endodermal and mesodermal germ layers. By mimicking the developmental process of the liver, various differentiation protocols have been published to generate human liver organoids (HLOs) in vitro using induced pluripotent stem cells (iPSCs). However, HLOs derived solely from the endodermal germ layer often encounter technical hurdles such as insufficient maturity and functionality, limiting their utility for disease modeling and hepatotoxicity assays.

View Article and Find Full Text PDF

Sox17 is a key transcriptional regulator of endoderm formation and function in the gallbladder, blood vessels and reproductive organs. Although multiple transcript variants of Sox17 have been suggested, the precise mechanisms underlying their time- and tissue-specific expression remain unclear. In this study, we discovered two putative regulatory sequences (R1 and R2) adjacent to different transcription start sites of mouse Sox17 exon 1 and generated deletion mice for these regions (Sox17).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!