Background: Most dental implants are positioned using a drilling surgery technique. However, dentistry recently experienced the implementation of piezoelectric surgery. This technique was introduced to overcome some of the limitations involving rotating instruments in bone surgery. This study used biomolecular and histologic analyses to compare the osseointegration of porous implants positioned using traditional drills versus the piezoelectric bone surgery technique.

Methods: Porous titanium implants were inserted into minipig tibias. Histomorphology and levels of bone morphogenetic protein (BMP)-4, transforming growth factor (TGF)-beta2, tumor necrosis factor-alpha, and interleukin-1beta and -10 were evaluated in the peri-implant osseous samples.

Results: Histomorphological analyses demonstrated that more inflammatory cells were present in samples from drilled sites. Also, neo-osteogenesis was consistently more active in bone samples from the implant sites that were prepared using piezoelectric bone surgery. Moreover, bone around the implants treated with the piezoelectric bone surgery technique showed an earlier increase in BMP-4 and TGF-beta2 proteins as well as a reduction in proinflammatory cytokines.

Conclusion: Piezoelectric bone surgery appears to be more efficient in the first phases of bone healing; it induced an earlier increase in BMPs, controlled the inflammatory process better, and stimulated bone remodeling as early as 56 days post-treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1902/jop.2007.060285DOI Listing

Publication Analysis

Top Keywords

bone surgery
24
piezoelectric bone
20
implants positioned
12
surgery technique
12
bone
11
titanium implants
8
surgery
8
earlier increase
8
piezoelectric
6
implants
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!