Hangman metalloporphyrin complexes poise an acid-base group over a redox-active metal center and in doing so allow the "pull" effect of the secondary coordination environment of the heme cofactor of hydroperoxidase enzymes to be modeled. Stopped-flow investigations have been performed to decipher the influence of a proton-donor group on O-O bond activation. Low-temperature reactions of tetramesitylporphyrin (TMP) and Hangman iron complexes containing acid (HPX-CO2H) and methyl ester (HPX-CO2Me) functional groups with peroxyacids generate high-valent Fe=O active sites. Reactions of peroxyacids with (TMP)FeIII(OH) and methyl ester Hangman (HPX-CO2Me)FeIII(OH) give both O-O heterolysis and homolysis products, Compound I (Cpd I) and Compound II (Cpd II), respectively. However, only the former is observed when the hanging group is the acid, (HPX-CO2H)FeIII(OH), because odd-electron homolytic O-O bond cleavage is inhibited. This proton-controlled, 2e- (heterolysis) vs 1e- (homolysis) redox specificity sheds light on the exceptional catalytic performance of the Hangman metalloporphyrin complexes and provides tangible benchmarks for using proton-coupled multielectron reactions to catalyze O-O bond-breaking and bond-making reactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja0683032 | DOI Listing |
Acta Crystallogr E Crystallogr Commun
January 2025
Département de Chimie Faculté des Sciences et Techniques Université Cheik Anta Diop Dakar Senegal.
In the binuclear title complex, [La(CHO)(CHN)(HO)](NO)·0.5HO, the two lanthanum ions are nine coordinate in a distorted trigonal-prismatic geometry. Each La ion is bonded to three N atoms of the Schiff base, 1-(pyridin-2-yl)-2-(pyridin-2-yl-methyl-ene)hydrazine and is coordinated by one acetate group, which acts in -bidentate mode and two acetate groups that act in -mode between the two La ions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
China University of Petroleum East China, State Key Laboratory of Heavy Oil Processing, 66 The Yangtze River West Road, 266580, Qingdao, CHINA.
The production of hydrogen peroxide (H2O2) through two-electron oxygen reduction reaction (2e- ORR) has emerged as a more environmentally friendly alternative to the traditional anthraquinone method. Although oxidized carbon catalysts have intensive developed due to their high selectivity and activity, the yield and conversion rate of H2O2 under high overpotential still limited. The produced H2O2 was rapidly consumed by the increased intensity of H2O2 reduction, which could ascribe to decomposition of peroxide radicals under high voltage in the carbon catalyst.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, China.
Regulating the spintronic structure of electrocatalysts can improve the oxygen evolution reaction performance efficiently. Nonetheless, the effects of tuning the spintronic structure for the oxygen evolution reaction mechanisms have rarely been discussed. Here, we show a ruthenium-cobalt-tin oxide with optimized spintronic structure due to the quantum spin interaction of Ru and Co.
View Article and Find Full Text PDFEnviron Technol
December 2024
School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China.
Ascorbic acid (AA) was used as a reducing agent to improve the Fe(III)-activated peracetic acid (PAA) system for the removal of sulfamethoxazole (SMX) in this work. The efficiency, influencing factors and mechanism of SMX elimination in the AA/Fe(III)/PAA process were studied. The results exhibited that AA facilitated the reduction of Fe(III) to Fe(II) and subsequently improved the activation of PAA and HO.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation.
The selective reaction of cyclic aminoperoxides with FeCl proceeds through a sequence of O-O and C-C bond cleavages, followed by intramolecular cyclization, yielding functionalized tetrahydrofurans in 44-82% yields. Replacing the peroxyacetal group in the peroxide structure with a peroxyaminal fragment fundamentally alters the reaction pathway. Instead of producing linear functionalized ketones, this modification leads to the formation of hard-to-access substituted tetrahydrofurans.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!