With closed static chamber and modified gas chromatograph (HP5890 II), the in situ measurements were made on the CO2, CH4 and N2O emissions from winter-fallowed paddy fields in the hilly area of South China. Gas samples were taken simultaneously from the fields with and without rice stubble. The results showed that both of the fields had the peak value of CO2 flux in the late afternoon. In the fields with and without rice stubble, the CH4 flux was positive in the day time while negative in the night, and the N2O flux in the day time was 1.79 and 1.58 times as much as that in the night, respectively. The diurnal average CO2 flux in the field with rice stubble was significantly higher than that in bare field (P < 0.05). Correlation analysis demonstrated that the CO2 flux in winter-fallowed paddy fields had significant correlations with soil temperature, aboveground temperature, and air temperature, suggesting that temperature was the main factor affecting the CO2 emission from rice field after harvesting. During the observation time (from 2003-11-10 to 2004-01-18), the average CO2, CH4 and N2O fluxes in the field with rice stubble were (180.69 +/- 21.21) mg x m(-2) x h(-1), (-0.04 +/- 0.01) mg x m(-2) x h(-1) and (21.26 +/- 19.31) microg x m(-2) x h(-1), respectively. Compared with bare field, the CO2 flux in the field with rice stubble was 13.06% higher, CH4 absorption increased by 50%, while N2O flux was 60.75% lower. It was concluded that the winter fallowed paddy field in hilly area of South China was the source of atmospheric CO2 and N2O, and the sink of atmospheric CH4.

Download full-text PDF

Source

Publication Analysis

Top Keywords

rice stubble
20
co2 flux
16
co2 ch4
12
ch4 n2o
12
winter-fallowed paddy
12
paddy fields
12
hilly area
12
area south
12
field rice
12
m-2 h-1
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!