Focal adhesion kinase (FAK) is a member of a family of non-receptor protein-tyrosine kinases that regulates integrin and growth factor signaling pathways involved in cell migration, proliferation, and survival. FAK expression is increased in many cancers, including breast and prostate cancer. Here we describe perturbation of adhesion-mediated signaling with a FAK inhibitor, PF-573,228. In vitro, this compound inhibited purified recombinant catalytic fragment of FAK with an IC(50) of 4 nM. In cultured cells, PF-573,228 inhibited FAK phosphorylation on Tyr(397) with an IC(50) of 30-100 nM. Treatment of cells with concentrations of PF-573,228 that significantly decreased FAK Tyr(397) phosphorylation failed to inhibit cell growth or induce apoptosis. In contrast, treatment with PF-573,228 inhibited both chemotactic and haptotactic migration concomitant with the inhibition of focal adhesion turnover. These studies show that PF-573,228 serves as a useful tool to dissect the functions of FAK in integrin-dependent signaling pathways in normal and cancer cells and forms the basis for the generation of compounds amenable for preclinical and patient trials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M606695200 | DOI Listing |
Rev Physiol Biochem Pharmacol
January 2025
Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.
Once multicellularity was thriving, a key development involved the emergence of epithelial layers that separated "inside" from "outside". Most epithelia then generate their own transepithelial electrical signals. So electrical forces were instrumental in the development of epithelial tissues, which themselves generate further electrical signals.
View Article and Find Full Text PDFJ Cell Physiol
January 2025
Department of Biosciences & Bioengineering, IIT Bombay, Mumbai, India.
In addition to proteins such as collagen (Col) and fibronectin, the extracellular matrix (ECM) is enriched with bulky proteoglycan molecules such as hyaluronic acid (HA). However, how ECM proteins and proteoglycans collectively regulate cellular processes has not been adequately explored. Here, we address this question by studying cytoskeletal and focal adhesion organization and dynamics on cells cultured on polyacrylamide hydrogels functionalized with Col, HA and a combination of Col and HA (Col/HA).
View Article and Find Full Text PDFMater Today Bio
February 2025
Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China.
Bone defects caused by trauma, infection, or tumors present a major clinical challenge. Titanium (Ti) implants are widely used due to their excellent mechanical properties and biocompatibility; however, their high elastic modulus, low surface bioactivity, and susceptibility to infection hinder osseointegration and increase failure rates. There is an increasing demand for implants that can resist bacterial infection while promoting osseointegration.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Mathematical Institute, Faculty of Science, Leiden University, Leiden, Netherlands.
Many mammalian cells, including endothelial cells and fibroblasts, align and elongate along the orientation of extracellular matrix (ECM) fibers in a gel when cultured . During cell elongation, clusters of focal adhesions (FAs) form near the poles of the elongating cells. FAs are mechanosensitive clusters of adhesions that grow under mechanical tension exerted by the cells' pulling on the ECM and shrink when the tension is released.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, Tianjin, 300060, P.R. China.
Background: Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer with alarmingly high morbidity. The cancer-associated fibroblasts (CAFs) play a pivotal role in tumor development, while their specific mechanisms in OSCC remains largely unclear. Our object is to explore a CAFs-related biomarker in OSCC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!