Insulin-like growth factor-I (IGF-I) is an important regulator of growth and development in vertebrates. Both the endocrine and paracrine actions of IGF-I are mediated through ligand-binding to a membrane-bound IGF-I receptor (IGF-IR). The characterization of this receptor and subsequent expression studies thus help elucidate the endocrine regulation of developmental processes. As other flatfish species, the Atlantic halibut (Hippoglossus hippoglossus) undergoes a dramatic larval metamorphosis. This process is largely under endocrine control, and data indicate that IGF-I could be a key regulator. IGF-I content increases up to late pre-metamorphosis and decreases during metamorphosis. The IGF-IR has, however, not been studied during flatfish metamorphosis. To examine IGF-IR gene expression, two IGF-IR mRNA were cloned and sequenced. These partial sequences share high identity (>or=95%) and similarity (>or=97%) with other fish IGF-IR and lower identity (>or=77%) and similarity (>or=83.5%) with Japanese flounder insulin receptors. The expression of mRNA for both IGF-IR was analyzed by quantitative real-time RT-PCR during six larval developmental stages from pre- to post-metamorphosis. IGF-IR1 and IGF-IR2 mRNA are differentially expressed during metamorphosis, but if this indicates an isoform-specific regulation of developmental processes by circulating and/or locally-secreted IGF-I is unclear. Both IGF-IR genes are down-regulated in halibut larvae experiencing arrested metamorphosis, suggesting the IGF-I system is critical for metamorphic success in halibut.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpb.2007.02.006DOI Listing

Publication Analysis

Top Keywords

atlantic halibut
8
insulin-like growth
8
growth factor-i
8
gene expression
8
regulation developmental
8
developmental processes
8
igf-i
7
igf-ir
7
metamorphosis
6
identification isoforms
4

Similar Publications

Article Synopsis
  • The study evaluates the common sole as a sentinel species for monitoring environmental contamination by comparing it with two similar flatfish species: common dab and European flounder.
  • Findings show that sole has lower levels of some contaminants (like mercury and cadmium) but higher levels of others (such as PCBs and PFOS) and exhibits various biological responses indicative of sensitivity to pollution.
  • The research concludes that due to its prevalence and responsiveness to chemical contaminants, the common sole is recommended for future ecotoxicological monitoring in marine environments.
View Article and Find Full Text PDF

Winter flounder (Pseudopleuronectes americanus) is a North Atlantic flatfish that inhabits cold-water environments already affected by global warming. Flatfishes are particularly sensitive during their juvenile stage to a phenomenon known as temperature-dependent sex determination (TSD). In this study, we hypothesized that many genes involved in the steroidogenesis pathway are already expressed at the larval stage in winter flounder and that temperature conditions may influence this pathway prior to the juvenile stage, which is usually considered the TSD-sensitive period.

View Article and Find Full Text PDF

Winter flounder Pseudopleuronectes americanus (Walbaum 1792) are a coastal flatfish species of economic and cultural importance that have dwindled to <15, % of their historic abundance in the southern New England/Mid-Atlantic region of the United States, with evidence indicating near-extirpation of certain local populations. This species exhibits intricate behaviors in spawning and migration that contribute to population complexity and resilience. These behaviors encompass full or partial philopatry to natal estuaries, the generation of multiple pulses of larval delivery, and partial migration.

View Article and Find Full Text PDF

Innate immunity is vital for animal homeostasis and survival. First-line immuno-defense for fish larvae involves mucus enriched with leukolectin (LL) secreted by dermal lectocytes. Later during the critical transition from yolk-nutrition to feeding, additional larval immuno-protection in zebrafish (zF) is provided by macrophages containing LL (lectophages).

View Article and Find Full Text PDF

Demand for n-3 polyunsaturated fatty acids (n-3 PUFAs) exceeds supply. Large-scale studies on effects of season and geography of n-3 PUFAs in marine fish from the Northeast Atlantic Ocean (NEAO) may be used to optimize utilization and improve nutrition security. Using a sinusoid model, seasonal cycles of n-3 PUFAs were determined and found to be species-specific and clearly pronounced for the pelagic zooplankton feeding species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!