Whereas long-term cholestasis results in intestinal alterations and increased permeability to hepatotoxins, the effect of short-term cholestasis is less known and was investigated in bile duct ligated (BDL) rats. In the intestinal mucosa, at Day 7 BDL, total glutathione and protein sulfhydryl contents had decreased, oxidized glutathione levels increased (P<0.05 vs baseline), and a reduced epithelium thickness with dissolving crypt phenomena was observed in 40% of rats. At Day 10, total protein content, glutathione-related enzyme activities, and the transmural electrophysiological activity had decreased (-50%); by contrast, oxidized proteins doubled (P<0.05), and histological changes were extended to 70% of rats. In vitro exposure to taurodeoxycholate at micellar concentrations determined dysepithelization in normal gut but dissolving crypt phenomena and necrosis in cholestatic bowels. In the liver, ongoing cholestasis was associated with early oxidative changes especially in mitochondria, where protein sulfhydryls were decreased and negatively correlated with glutathione-protein mixed disulfides (r=-0.807, P<0.001). Daily oral administration of tauroursodeoxycholate, a hydrophilic bile salt, and glutathione to BDL rats improved intestinal histology, function, and redox state. In conclusion, short-term cholestasis results in distinctive functional, oxidative, and morphological changes of intestinal mucosa, determined increased vulnerability to toxic injury, and parallel hepatic oxidative damage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2007.01.039DOI Listing

Publication Analysis

Top Keywords

parallel intestinal
4
intestinal liver
4
liver injury
4
injury early
4
early cholestasis
4
cholestasis rat
4
rat modulation
4
modulation bile
4
bile salts
4
salts antioxidants
4

Similar Publications

Host-microbiome-dietary interactions play crucial roles in regulating human health, yet their direct functional assessment remains challenging. We adopted metagenome-informed metaproteomics (MIM), in mice and humans, to non-invasively explore species-level microbiome-host interactions during commensal and pathogen colonization, nutritional modification, and antibiotic-induced perturbation. Simultaneously, fecal MIM accurately characterized the nutritional exposure landscape in multiple clinical and dietary contexts.

View Article and Find Full Text PDF

Background: Schistosomiasis is caused by infection with parasitic worms and affects more than 250 million people globally. The detection of schistosome derived circulating cathodic and anodic antigens (CCA and CAA) has proven highly valuable for detecting active infections, causing both intestinal and urinary schistosomiasis.

Aim: The combined detection of CCA and CAA was explored to improve accuracy in detecting infections.

View Article and Find Full Text PDF

Albendazole-ivermectin co-formulation for the treatment of Trichuris trichiura and other soil-transmitted helminths: a randomised phase 2/3 trial.

Lancet Infect Dis

January 2025

Barcelona Institute for Global Health, Barcelona, Spain; International Health Department, Hospital Clinic de Barcelona, Barcelona, Spain; Universitat de Barcelona, Barcelona, Spain. Electronic address:

Background: Treatments for soil-transmitted helminthiases face challenges, especially in addressing Trichuris trichiura. Combination regimens, particularly of ivermectin and albendazole, are promising. We aimed to assess the safety, efficacy, and palatability of a combination tablet for the treatment of T trichiura, hookworm, and Strongyloides stercoralis infections among school-aged children in Ethiopia, Kenya, and Mozambique.

View Article and Find Full Text PDF

This study was conducted to assess the effects of fumonisin B (FB) on the jejunum of pigs using a novel ex vivo model conducted in parallel with an in vivo trial. For the in vivo model, twelve male 28 to 70-days-old pigs were subjected to two treatments of six animals each: the control group, fed a basal diet (BD), and the FB group, fed the BD + 50 mg/kg FB. At 70 days, the animals were slaughtered and one jejunal sample was collected from each pig for further histopathological analyses.

View Article and Find Full Text PDF

Non-cell-autonomous regulation of mTORC2 by Hedgehog signaling maintains lipid homeostasis.

Cell Rep

January 2025

Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Electronic address:

Organisms allocate energetic resources between essential cellular processes to maintain homeostasis and, in turn, maximize fitness. The nutritional regulators of energy homeostasis have been studied in detail; however, how developmental signals might impinge on these pathways to govern metabolism is poorly understood. Here, we identify a non-canonical role for Hedgehog (Hh), a classic regulator of development, in maintaining intestinal lipid homeostasis in Caenorhabditis elegans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!