An important phase in the step cycle is foot contact. When the moment of foot contact differs from the one expected, a fast response is needed. Such a mismatch can be caused by hitting a support surface earlier or later than expected. To study this, experiments were performed with healthy young adults who walked on a platform that was unexpectedly at a lowered (5 cm) or at a level height. Glasses blocked the lower visual field. In the unexpectedly lowered trials, the absence of expected heel contact triggered responses in the ipsilateral anti-gravity muscles [ipsilateral medial gastrocnemius (MGi), ipsilateral rectus femoris (RFi)] and contralateral flexor muscles [contralateral tibialis anterior (TAc), contralaterial biceps femoris (BFc)] with latencies of 47-69 ms. After the delayed heel contact, enhanced activity was found in the MGi, RFi, and TAc muscles. This specific muscle synergy was presumably activated to arrest the forward propulsion of the body. In contrast, when the surface was unexpectedly at level height, the subjects expected to step down, and the leg briefly yielded. A muscle synergy was activated at 46-81 ms that flexed the ipsilateral knee (TAi, BFi, RFi) and extended the contralateral one (MGc, BFc) to unload the perturbed leg and delay the contralateral swing phase. Both conditions triggered a fast functionally relevant muscle synergy because of a mismatch between the expected and actual sensory feedback at the moment of foot contact. The results are consistent with an internal model that compares the expected with the actual sensory feedback. The short latency of the response suggests a subcortical, possibly cerebellar pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.01272.2006DOI Listing

Publication Analysis

Top Keywords

foot contact
12
muscle synergy
12
support surface
8
moment foot
8
unexpectedly lowered
8
level height
8
heel contact
8
expected actual
8
actual sensory
8
sensory feedback
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!