Background: Idiopathic pulmonary fibrosis is progressive and often fatal; causes of familial clustering of the disease are unknown. Germ-line mutations in the genes hTERT and hTR, encoding telomerase reverse transcriptase and telomerase RNA, respectively, cause autosomal dominant dyskeratosis congenita, a rare hereditary disorder associated with premature death from aplastic anemia and pulmonary fibrosis.

Methods: To test the hypothesis that familial idiopathic pulmonary fibrosis may be caused by short telomeres, we screened 73 probands from the Vanderbilt Familial Pulmonary Fibrosis Registry for mutations in hTERT and hTR.

Results: Six probands (8%) had heterozygous mutations in hTERT or hTR; mutant telomerase resulted in short telomeres. Asymptomatic subjects with mutant telomerase also had short telomeres, suggesting that they may be at risk for the disease. We did not identify any of the classic features of dyskeratosis congenita in five of the six families.

Conclusions: Mutations in the genes encoding telomerase components can appear as familial idiopathic pulmonary fibrosis. Our findings support the idea that pathways leading to telomere shortening are involved in the pathogenesis of this disease.

Download full-text PDF

Source
http://dx.doi.org/10.1056/NEJMoa066157DOI Listing

Publication Analysis

Top Keywords

pulmonary fibrosis
20
idiopathic pulmonary
16
short telomeres
12
mutations genes
8
htert htr
8
encoding telomerase
8
dyskeratosis congenita
8
familial idiopathic
8
mutations htert
8
mutant telomerase
8

Similar Publications

This paper presents a comprehensive review of the current literature, clinical trials, and products approved for the delivery of antibiotics to the lungs. While there are many literature reports describing potential delivery systems, few of these have translated into marketed products. Key challenges remaining are the high doses required and, for powder formulations, the ability of the inhaler and powder combination to deliver the dose to the correct portion of the respiratory tract for maximum effect.

View Article and Find Full Text PDF

The Importance of Lung Innate Immunity During Health and Disease.

Pathogens

January 2025

Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.

The lung is a vital organ for the body as the main source of oxygen input. Importantly, it is also an internal organ that has direct contact with the outside world. Innate immunity is a vital protective system in various organs, whereas, in the case of the lung, it helps maintain a healthy, functioning cellular and molecular environment and prevents any overt damage caused by pathogens or other inflammatory processes.

View Article and Find Full Text PDF

: Long-term lung sequelae in severe COVID-19 survivors, as well as their treatment, are poorly described in the current literature. : To investigate lung fibrotic sequelae in survivors of severe/critical COVID-19 pneumonia and their fate according to a "non-interventional" approach. : Prospective study of the above COVID-19 survivors after hospital discharge from March 2020 to October 2022.

View Article and Find Full Text PDF

Background: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease with a median survival of 3-5 years. Antifibrotic therapies like pirfenidone and nintedanib slow progression, but the outcomes vary. Gender may influence disease presentation, progression, and response to treatment.

View Article and Find Full Text PDF

Following the COVID-19 pandemic, the prevalence of pulmonary fibrosis has increased significantly, placing patients at higher risk and presenting new therapeutic challenges. Current anti-fibrotic drugs, such as Nintedanib, can slow the decline in lung function, but their severe side effects highlight the urgent need for safer and more targeted alternatives. This study explores the anti-fibrotic potential and underlying mechanisms of an endogenous peptide (P5) derived from fibroblast growth factor 2 (FGF2), developed by our research team.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!