Background: Epstein-Barr virus (EBV) DNA load monitoring is known to be useful for the diagnosis and monitoring of EBV-associated diseases. The aim of this study is to compare the performance of two real-time PCR assays for EBV DNA: a commercial kit as the Q-EBV Real-Time System (Q-EBV PCR, Amplimedical, Turin, Italy) and an in-house assay (EBV RQ-PCR).

Results: The range of linearity and the degree of precision of the two assays were similar. The clinical sensitivity of Q-EBV PCR was higher for reference samples containing less than 1,000 EBV DNA copies/ml. The absolute quantitative results of the two methods were statistically correlated (R2 = 0.7789; p < 0.0001), with the systematic overestimation by EBV RQ-PCR possibly linked to different amplification efficiency in calibration standards.

Conclusion: Both the commercial and the in-house assay may be appropriate for clinical use, but common standards are advisable for comparable absolute values, as these would improve the clinical utility of EBV DNA load measurement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1852802PMC
http://dx.doi.org/10.1186/1471-2180-7-22DOI Listing

Publication Analysis

Top Keywords

ebv dna
20
commercial in-house
8
real-time pcr
8
pcr assays
8
epstein-barr virus
8
virus ebv
8
dna load
8
q-ebv pcr
8
in-house assay
8
ebv
7

Similar Publications

Background: There is no consensus regarding the optimal regimen for metastatic nasopharyngeal carcinoma (dmNPC). Locoregional intensity modulated radiotherapy (LRRT) following palliative chemotherapy (PCT) has been shown to prolong the overall survival (OS) and improve the progression-free survival (PFS) of patients with dmNPC, compared with PCT alone. However, patients with a high tumor burden do not benefit from additional LRRT, which inevitably results in toxicity.

View Article and Find Full Text PDF

Rapid and sensitive detection of Epstein-Barr virus cell-free DNA (EBV cfDNA) is crucial for early diagnosis and monitoring of nasopharyngeal carcinoma (NPC), but accessibility to screening is limited by complicated and costly conventional DNA isolation and purification approaches. Here, a fully integrated ion concentration polarization (ICP)-enriched and nanozyme-catalyzed lateral flow assay (ICP-cLFA) is developed, enabling total analysis of EBV cfDNA in whole blood samples, with DNA isolation, pre-concentration, and amplification performed on a microfluidic chip, consequently providing the signal readout within 75 min. Specifically, ICP preconcentration and amplification steps, together with target recognition catalyzed by a platinum-decorated mesoporous gold nanosphere (MGNS@Pt) nanozyme, result in an ultralow detection limit of 4 aM in standard cfDNA samples and 100 aM in whole blood from NPC-bearing rats.

View Article and Find Full Text PDF

Background: To elucidate the genetic and molecular mechanisms underlying psoriasis by employing an integrative multi-omics approach, using summary-data-based Mendelian randomization (SMR) to infer causal relationships among DNA methylation, gene expression, and protein levels in relation to psoriasis risk.

Methods: We conducted SMR analyses integrating genome-wide association study (GWAS) summary statistics with methylation quantitative trait loci (mQTL), expression quantitative trait loci (eQTL), and protein quantitative trait loci (pQTL) data. Publicly available datasets were utilized, including psoriasis GWAS data from the European Molecular Biology Laboratory-European Bioinformatics Institute and the UK Biobank.

View Article and Find Full Text PDF

Intrinsic p53 activation restricts gammaherpesvirus driven germinal center B cell expansion during latency establishment.

Nat Commun

January 2025

Dept. of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Inflammatory Responses, and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.

Gammaherpesviruses are DNA tumor viruses that establish lifelong latent infections in lymphocytes. For viruses such as Epstein-Barr virus and murine gammaherpesvirus 68, this is accomplished through a viral gene-expression program that promotes cellular proliferation and differentiation, especially of germinal center B cells. Intrinsic host mechanisms that control virus-driven cellular expansion are incompletely defined.

View Article and Find Full Text PDF

Background: The prospective application of plasma Epstein-Barr virus (EBV) DNA load as a noninvasive measure of intestinal EBV infection remains unexplored. This study aims to identify ideal threshold levels for plasma EBV DNA loads in the diagnosis and outcome prediction of intestinal EBV infection, particularly in cases of primary intestinal lymphoproliferative diseases and inflammatory bowel disease (IBD).

Methods: Receiver operating characteristic (ROC) curves were examined to determine suitable thresholds for plasma EBV DNA load in diagnosing intestinal EBV infection and predicting its prognosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!