The candidate phylum 'Termite Group 1' (TG1) of bacteria, which is abundant in termite guts but has no culturable representative, was investigated with respect to the in situ localization, distribution, and diversity. Based on the 16S rRNA gene sequence analyses and FISH in termite guts, a number of lineages of TG1 members were identified as endosymbionts of a variety of gut flagellated protists from the orders Trichonymphida, Cristamonadida, and Oxymonadida that are mostly unique to termites. However, the survey in various environments using specific PCR primers revealed that TG1 members were also present in termites, a cockroach, and the bovine rumen that typically lack these protist orders. Most of the TG1 members from gut flagellates, termites, cockroaches, and the rumen formed a monophyletic subcluster that showed a shallow branching pattern in the phylogenetic tree, suggesting their recent diversification. Although endosymbionts of the same protist genera tended to be closely related, the endosymbiont lineages were often independent of the higher level classifications of their host protist and were dispersed in the phylogenetic tree. It appears that their cospeciation is not the sole rule for the diversification of TG1 members of endosymbionts.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-6941.2007.00311.xDOI Listing

Publication Analysis

Top Keywords

tg1 members
16
candidate phylum
8
phylum 'termite
8
'termite group
8
members gut
8
gut flagellated
8
flagellated protists
8
termite guts
8
phylogenetic tree
8
members
5

Similar Publications

Transglutaminase 1: Emerging Functions beyond Skin.

Int J Mol Sci

September 2024

Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada.

Transglutaminase enzymes catalyze Ca- and thiol-dependent posttranslational modifications of glutamine-residues that include esterification, hydrolysis and transamidation, which results in covalent protein-protein crosslinking. Among the eight transglutaminase family members in mammals, transglutaminase 1 (TG1) plays a crucial role in skin barrier formation via crosslinking and insolubilizing proteins in keratinocytes. Despite this established function in skin, novel functions have begun merging in normal tissue homeostasis as well as in pathologies.

View Article and Find Full Text PDF

Over the past 50 years there have been great strides made in the discovery of the composition and relevance of the total stratum corneum (SC) ceramide matrix. However, the focus of this review is on the free intercellular class of ω-linoleoyloxyacylceramides, corneocyte-bound ceramides and associated lipids known as the corneocyte lipid envelope (CLE) together with their processing enzymes involved in aiding ceramide attachment the corneocyte protein envelope (CPE). Two structural models and partially shared biosynthetic pathways have been proposed for the attachment of CPE-bound O-ceramides (ω-hydroxyceramides attached to glutamate residues of proteins in the (CPE) using the 12R-lipoxygenase (12R-LOX)/epidermal lipoxygenase-3 (eLOX3)/epoxide hydrolase-3 (EPHX3)/unknown esterase/ transglutaminase-1 (TG1) attachment pathway) and CPE-bound EO-ceramides (epoxy-enone ceramides attached to cysteine residues of proteins in the CPE using the 12R-LOX/eLOX3/short chain dehydrogenase/reductase family 9C member 7 (SDR9C7)/non-enzymatic attachment pathway), i.

View Article and Find Full Text PDF

The structure and biochemical properties of protease inhibitors from the thyropin family are poorly understood in parasites and pathogens. Here, we introduce a novel family member, Ir-thyropin (IrThy), which is secreted in the saliva of ticks, vectors of Lyme borreliosis and tick-borne encephalitis. The IrThy molecule consists of two consecutive thyroglobulin type-1 (Tg1) domains with an unusual disulfide pattern.

View Article and Find Full Text PDF

High-titer production of staurosporine by heterologous expression and process optimization.

Appl Microbiol Biotechnol

September 2023

State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai, 201203, People's Republic of China.

Article Synopsis
  • * Researchers utilized CRISPR/Cas9 to capture and integrate the staurosporine biosynthetic gene cluster into various Streptomyces strains, with the most successful being Streptomyces albus J1074, which produced 750 mg/L of staurosporine.
  • * Further genetic modifications and optimization of fermentation conditions led to an impressive increase in staurosporine yield to 4568 mg/L, marking a 30-fold improvement over native production levels and setting a new benchmark for industrial production. *
View Article and Find Full Text PDF

The Source Area of the Yellow River (SAYR) on the Northeastern Qinghai-Tibet Plateau (QTP) stores substantial amounts of ground ice, which plays a significant role in understanding the hydrological processes and past permafrost evolution on the QTP. However, little is known about the initial sources and controlling factors of the ground ice in the SAYR. In this study, for the first time, ground ice stable isotope data (δO, δD, and d-excess) are presented, along with cryostratigraphic information for nine sites is integrated into three cryostratigraphic units (palsa, thermo-gully, and lake-affected sites) in the central SAYR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!