The genetic structure in populations of the Chagas' disease vector Triatoma infestans was examined. Comparisons of the levels of genetic variability in populations of this species from areas with different periods since last insecticide treatment and from areas that never received treatment were also carried out. A total of 598 insects from 19 populations were typed for 10 polymorphic microsatellite loci. The average observed and expected heterozygosities ranged from 0.186 to 0.625 and from 0.173 to 0.787, respectively. Genetic drift and limited gene flow appear to have generated a substantial degree of genetic differentiation among the populations of T. infestans. Departures from Hardy-Weinberg expectations due to an excess of homozygotes suggested the presence of null alleles and population subdivision. Microgeographical analysis supports the existence of subdivision in T. infestans populations. Levels of genetic diversity in the majority of the populations of T. infestans from insecticide-treated localities were similar or higher than those detected in populations from areas without treatment. Since the populations of T. infestans are subdivided, a population bottleneck would result in independent genetic drift effects that could randomly preserve different combinations of alleles in each subpopulation. These events followed by a rapid population growth could have preserved high levels of genetic diversity. This study supports the hypothesis of vector population recovery from survivors of the insecticide-treated areas and therefore highlights the value of population genetic analyses in assessing the effectiveness of Chagas' disease vector control programmes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-294X.2007.03251.x | DOI Listing |
Biomed Pharmacother
January 2025
Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal, RN, Brazil. Electronic address:
Chagas disease is a neglected tropical disease caused by the protozoan Trypanosoma cruzi, remains a significant global health challenge. Currently, benznidazole (BNZ) is the primary treatment in many countries. However, this drug is limited by low bioavailability, significant host toxicity, and reduced efficacy in chronic disease phase.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil.
Background: The apolipoprotein ε4 (ApoE4) allele is a major risk factor for sporadic Alzheimer's disease (AD) and was shown to promote amyloid-β (Aβ) accumulation and mediate pathophysiological processes in AD. Although the molecular interaction between Aβ and ApoE is acknowledged, the precise nature of this interaction remains unclear. This study aims to explore the biophysical and biochemical nature of the interaction between Aβ and ApoE in the ε3 and ε4 isoforms.
View Article and Find Full Text PDFSci Rep
January 2025
Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brasil.
This work investigates the anti-trypanosomal activities of ten thiohydantoin derivatives against the parasite Trypanosoma cruzi. Compounds with aliphatic chains (THD1, THD3, and THD5) exhibited the most promising IC against the epimastigote form of T. cruzi.
View Article and Find Full Text PDFActa Trop
December 2024
Laboratorio de Estudio de la Biología de Insectos, Centro de Investigación Científica y de Transferencia Tecnológica a la Producción (CICYTTP - CONICET), Diamante, Entre Ríos, Argentina.; Facultad de Ingeniería, Universidad Nacional de Ente Ríos, Entre Ríos, Argentina.. Electronic address:
Chagas disease, vectored by kissing bugs, poses a public health problem across the Americas. The best way for reducing disease transmission is through vector control, which is currently based on the use of insecticides. However, insecticide resistance, and environmental and health issues, stress the need for new, environmentally-friendly methods for reducing vector-host contacts.
View Article and Find Full Text PDFEur J Med Chem
December 2024
Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-535, Recife, PE, Brazil. Electronic address:
Trypanosomatidae diseases, such as Chagas disease and leishmaniasis, are caused by protozoan parasites of the Trypanosomatidae family, namely Trypanosoma cruzi and Leishmania species, respectively. There is an urgent need for new therapies. Both pyridine and thiazole rings are recognized as important scaffolds in medicinal chemistry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!