Marine protected areas (MPAs) that allow some degree of artisanal fishing have been proposed to control the overexploitation of marine resources while allowing extraction by local communities. Nevertheless, the management of MPAs is often impaired by the absence of data on the status of their resources. We devised a method to estimate population growth rates with the type of data that are usually available for reef fishes. We used 7 years of spatially explicit abundance data on the leopard grouper (Mycteroperca rosacea) in an MPA in the Gulf of California, Mexico, to construct a matrix population model that incorporated the effects of El Niño/La Niña Southern Oscillation on population dynamics. An environmental model that estimated different demographic estimates for El Niño and La Niña periods performed better than a single-environment model, and a single-habitat model performed better than a model that considered different depths as different habitats. Our results suggest that the population of the leopard grouper off the main island of the MPA is not viable under present conditions. Although the impact of fishing on leopard grouper populations in the MPA has not yet been established, fishing should be closed as a precautionary measure at this island if a priority of the MPA is to ensure the sustainability of its fish populations.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1523-1739.2006.00644.xDOI Listing

Publication Analysis

Top Keywords

leopard grouper
12
fish populations
8
performed better
8
model
5
viability analysis
4
analysis reef
4
reef fish
4
populations based
4
based limited
4
limited demographic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!