In the present study, the precise mechanism of the enhancing action of histone deacetylase (HDAC) inhibitors on cisplatin (CDDP)-induced apoptosis was investigated using suberoylanilide hydroxamic acid (SAHA) in human oral squamous cell carcinoma cells (HSC-3). HDAC inhibitors are promising novel compounds for the treatment of cancer, which cooperate with chemotherapeutic agents to induce apoptosis. Apoptosis enhancement of HSC-3 cells by SAHA was accompanied by the activation of caspase-3, -8 and -9, suggesting a mitochondrial-dependent amplification loop. Concomitant treatment (CDDP/SAHA) of cells resulted in the most effective enhancement of apoptosis compared to other timing combinations. By means of cell-cycle synchronization, G0/G1-phase cells proved to be a more sensitive fraction to SAHA action than their synchronized counterparts in other phases. Furthermore, cells treated with SAHA revealed a decrease in intracellular reduced glutathione (GSH) contents. Of importance, the GSH synthesis inhibitor, diethyl maleate, decreased intracellular GSH and enhanced CDDP-induced apoptosis in a similar pattern of timing to SAHA. Thus, SAHA appears to disrupt the intracellular redox balance, which causes maximal apoptosis at the G0/G1 phase arrested by CDDP in HSC-3 cells. These results demonstrate that HDAC inhibitors not only cause a change in the histone acetylation status, but are also able to influence the apoptotic process at several levels, and GSH plays a key role in governing SAHA-dependent enhancement of CDDP-induced apoptosis.
Download full-text PDF |
Source |
---|
Chem Biol Drug Des
January 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, Turkiye.
Invasive fungal infections (IFIs) pose significant challenges in clinical settings, particularly due to their high morbidity and mortality rates. The rising incidence of these infections, coupled with increasing antifungal resistance, underscores the urgent need for novel therapeutic strategies. Current antifungal drugs target the fungal cell membrane, cell wall, or intracellular components, but resistance mechanisms such as altered drug-target interactions, enhanced efflux, and adaptive cellular responses have diminished their efficacy.
View Article and Find Full Text PDFAdv Exp Med Biol
January 2025
Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
Epigenetic regulation in hematopoietic stem cells (HSCs) research has emerged as a transformative molecular approach that enhances understanding of hematopoiesis and hematological disorders. This chapter investigates the intricate epigenetic mechanisms that control HSCs function, including deoxyribonucleic acid (DNA) methylation, histone modifications, and chromatin remodeling. It also explores the role of non-coding ribonucleic acid (RNAs) as epigenetic regulators, highlighting how changes in gene expression can occur without alterations to the DNA sequence.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People's Republic of China.
Background: Givinostat, a potent histone deacetylase (HDAC) inhibitor, is promising for the treatment of relapsed leukemia and myeloma.
Purpose: This study aimed to develop and verify a quick assay for the measurement of givinostat concentration using ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) with eliglustat as the internal standard (IS), establishing a basic pharmacokinetic profile for its pre-clinical application and metabolic stability in vitro.
Methods: Sample preparation was performed via protein precipitation using acetonitrile.
J Biol Chem
January 2025
Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, India. Electronic address:
Long Interspersed Nuclear Element 1 (LINE1/L1) retrotransposons, which comprise 17% of the human genome, typically remain inactive in healthy somatic cells but are reactivated in several cancers. We previously demonstrated that p53 silences L1 transposons in human somatic cells, potentially acting as a tumor-suppressive mechanism. However, the precise molecular mechanisms underlying p53-mediated repression of L1 and its life cycle intermediates remain unclear.
View Article and Find Full Text PDFPhytomedicine
January 2025
Post-graduate Department of Biotechnology, Utkal University, Bhubaneswar, 751004, Odisha, India.; Centre of Excellence in Integrated Omics and Computational Biology, Utkal University, Bhubaneswar 751004, Odisha, India.. Electronic address:
Background: Cardiovascular diseases (CVDs) are the major contributor to global mortality and are gaining incremental attention following the COVID-19 outbreak. Epigenetic events such as DNA methylation, histone modifications, and non-coding RNAs have a significant impact on the incidence and onset of CVDs. Altered redox status is one of the major causative factors that regulate epigenetic pathways linked to CVDs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!