Cohesin is dispensable for centromere cohesion in human cells.

PLoS One

Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America.

Published: March 2007

Background: Proper regulation of the cohesion at the centromeres of human chromosomes is essential for accurate genome transmission. Exactly how cohesion is maintained and is then dissolved in anaphase is not understood.

Principal Findings: We have investigated the role of the cohesin complex at centromeres in human cells both by depleting cohesin subunits using RNA interference and also by expressing a non-cleavable version of the Rad21 cohesin protein. Rad21 depletion results in aberrant anaphase, during which the sister chromatids separate and segregate in an asynchronous fashion. However, centromere cohesion was maintained before anaphase in Rad21-depleted cells, and the primary constrictions at centromeres were indistinguishable from those in control cells. Expression of non-cleavable Rad21 (NC-Rad21), in which the sites normally cleaved by separase are mutated, resulted in delayed sister chromatid resolution in prophase and prometaphase, and a blockage of chromosome arm separation in anaphase, but did not impede centromere separation.

Conclusions: These data indicate that cohesin complexes are dispensable for sister cohesion in early mitosis, yet play an important part in the fidelity of sister separation and segregation during anaphase. Cleavage at the separase-sensitive sites of Rad21 is important for arm separation, but not for centromere separation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1820851PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0000318PLOS

Publication Analysis

Top Keywords

centromere cohesion
8
human cells
8
centromeres human
8
cohesion maintained
8
arm separation
8
cohesin
5
cohesion
5
anaphase
5
cohesin dispensable
4
centromere
4

Similar Publications

HP1 Promotes the Centromeric Localization of ATRX and Protects Cohesion by Interfering Wapl Activity in Mitosis.

Front Biosci (Landmark Ed)

January 2025

The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China.

Background: α thalassemia/mental retardation syndrome X-linked (ATRX) serves as a part of the sucrose nonfermenting 2 (SNF2) chromatin-remodeling complex. In interphase, ATRX localizes to pericentromeric heterochromatin, contributing to DNA double-strand break repair, DNA replication, and telomere maintenance. During mitosis, most ATRX proteins are removed from chromosomal arms, leaving a pool near the centromere region in mammalian cells, which is critical for accurate chromosome congression and sister chromatid cohesion protection.

View Article and Find Full Text PDF

Aneuploidy in eggs is a leading cause of miscarriages or viable developmental syndromes. Aneuploidy rates differ between individual chromosomes. For instance, chromosome 21 frequently missegregates, resulting in Down Syndrome.

View Article and Find Full Text PDF

Stromal antigen 1 and 2 (STAG1 and STAG2) are two mutually exclusive components of the cohesin complex that is crucial for centromeric and telomeric cohesion. Beyond its structural role, STAG2 also plays a pivotal role in homologous recombination (HR) repair and has emerged as a promising therapeutic target in cancer treatment. Here, we employed a fluorescence polarization (FP)-based high-throughput screening and identified KPT-6566 as a dual inhibitor of STAG1 and STAG2.

View Article and Find Full Text PDF

Microtubule poleward flux as a target for modifying chromosome segregation errors.

Proc Natl Acad Sci U S A

November 2024

Laboratory of Cell Biophysics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb 10000, Croatia.

Cancer cells often display errors in chromosome segregation, some of which result from improper chromosome alignment at the spindle midplane. Chromosome alignment is facilitated by different rates of microtubule poleward flux between sister kinetochore fibers. However, the role of the poleward flux in supporting mitotic fidelity remains unknown.

View Article and Find Full Text PDF

Retrotransposons have invaded eukaryotic centromeres in cycles of repeat expansion and purging, but the function of centromeric retrotransposons has remained unclear. In Arabidopsis, centromeric ATHILA retrotransposons give rise to epigenetically activated short interfering RNAs in mutants in DECREASE IN DNA METHYLATION1 (DDM1). Here we show that mutants that lose both DDM1 and RNA-dependent RNA polymerase have pleiotropic developmental defects and mis-segregate chromosome 5 during mitosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!