The glycosyltransferase enzymes (Lgts) responsible for the biosynthesis of the lipooligosaccharide-derived oligosaccharide structures from Moraxella catarrhalis have been investigated. This upper respiratory tract pathogen is responsible for a spectrum of illnesses, including otitis media (middle ear infection) in children, and contributes to exacerbations of chronic obstructive pulmonary disease in elderly patients. To investigate the function of the glycosyltransferase enzymes involved in the biosynthesis of lipooligosaccharide of M. catarrhalis and to gain some insight into the mechanism of serotype specificity for this microorganism, mutant strains of M. catarrhalis were produced. Examination by NMR and MS of the oligosaccharide structures produced by double-mutant strains (2951lgt1/4Delta and 2951lgt5/4Delta) and a single-mutant strain (2951lgt2Delta) of the bacterium has allowed us to propose a model for the serotype-specific expression of lipooligosaccharide in M. catarrhalis. According to this model, the presence/absence of Lgt4 and the Lgt2 allele determines the lipooligosaccharide structure produced by a strain. Furthermore, it is concluded that Lgt4 functions as an N-acetylglucosylamine transferase responsible for the addition of an alpha-D-GlcNAc (1-->2) glycosidic linkage to the (1-->4) branch, and also that there is competition between the glycosyltransferases Lgt1 and Lgt4. That is, in the presence of an active Lgt4, GlcNAc is preferentially added to the (1-->4) chain of the growing oligosaccharide, instead of Glc. In serotype B strains, which lack Lgt4, Lgt1 adds a Glc at this position. This implies that active Lgt4 has a much higher affinity/specificity for the beta-(1-->4)-linked Glc on the (1-->4) branch than does Lgt1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1742-4658.2007.05746.x | DOI Listing |
Microbiome
January 2025
Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, Jena, 07745, Germany.
Background: The pathogenesis of non-alcoholic fatty liver disease (NAFLD) with a global prevalence of 30% is multifactorial and the involvement of gut bacteria has been recently proposed. However, finding robust bacterial signatures of NAFLD has been a great challenge, mainly due to its co-occurrence with other metabolic diseases.
Results: Here, we collected public metagenomic data and integrated the taxonomy profiles with in silico generated community metabolic outputs, and detailed clinical data, of 1206 Chinese subjects w/wo metabolic diseases, including NAFLD (obese and lean), obesity, T2D, hypertension, and atherosclerosis.
J Transl Med
January 2025
Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Catania, Italy.
Background: Clonal myeloproliferation and fibrotic transformation of the bone marrow (BM) are the pathogenetic events most commonly occurring in myelofibrosis (MF). There is great evidence indicating that tumor microenvironment is characterized by high lactate levels, acting not only as an energetic source, but also as a signaling molecule.
Methods: To test the involvement of lactate in MF milieu transformation, we measured its levels in MF patients' sera, eventually finding a massive accumulation of this metabolite, which we showed to promote the expansion of immunosuppressive subsets.
Fluids Barriers CNS
January 2025
Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada.
Background: Iduronate-2-sulfatase (IDS) deficiency (MPS II; Hunter syndrome) is a disorder that exhibits peripheral and CNS pathology. The blood brain barrier (BBB) prevents systemic enzyme replacement therapy (ERT) from alleviating CNS pathology. We aimed to enable brain delivery of systemic ERT by using molecular BBB-Trojans targeting endothelial transcytosis receptors.
View Article and Find Full Text PDFBiol Res
January 2025
School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China.
Background: Protein palmitoylation, a critical posttranslational modification, plays an indispensable role in various cellular processes, including the regulation of protein stability, mediation of membrane fusion, facilitation of intracellular protein trafficking, and participation in cellular signaling pathways. It is also implicated in the pathogenesis of diseases, such as cancer, neurological disorders, inflammation, metabolic disorders, infections, and neurodegenerative diseases. However, its regulatory effects on sperm physiology, particularly motility, remain unclear.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain.
Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with limited treatment options and a poor prognosis. The critical role of epigenetic alterations such as changes in DNA methylation, histones modifications, and chromatin remodeling, in pancreatic tumors progression is becoming increasingly recognized. Moreover, in PDAC these aberrant epigenetic mechanisms can also limit therapy efficacy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!