Pinpointing of phosphorylation sites by positive ion collision-induced dissociation (CID) in phosphopeptides containing consecutive Ser/Thr residues (Ser/Thr clusters) is frequently hampered by the lack of backbone cleavage between adjacent Ser/Thr or pSer/pThr sites. In this study, we demonstrate that in negative ion collision-induced dissociation phosphorylated and unmodified residues of Ser/Thr clusters exhibit a very selective behavior toward cleavage of their N-Calpha bonds. Ser/Thr clusters were defined as two and more consecutive serine or threonine residues in phosphopeptide sequences. Dissociation reactions at pSer are significantly more abundant than those of unmodified sites. Thr residues exhibit the same effect, but the cleavages occurring at pThr are generally less prominent than those at pSer. The correlation observed between the facility of the amine backbone bond dissociation of phosphopeptides and the presence of the phosphate group on the side chain residues of Ser and Thr is attributed to the different magnitudes of electron density on the Calpha atoms of the amino acid in phosphorylated and unmodified forms. The results of this study indicate that the intensity ratio of the fragments generated by N-Calpha bond cleavage within the phosphopeptide Ser/Thr clusters represents a reliable and general marker for pinpointing of phosphorylation sites. The presented data illustrate that negative ion electrospray CID is superior over the standard positive ion mode approach for the localization of protein phosphorylation inside Ser/Thr clusters.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac0623991DOI Listing

Publication Analysis

Top Keywords

ser/thr clusters
20
negative ion
12
collision-induced dissociation
12
pinpointing phosphorylation
12
phosphorylation sites
12
protein phosphorylation
8
ion electrospray
8
positive ion
8
ion collision-induced
8
residues ser/thr
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!