Vibrationally state-selective spin-orbit transfer with strong nonresonant pulses.

J Phys Chem A

Departamento de Química Física, Universidad Complutense, 28040 Madrid, Spain.

Published: April 2007

By dynamic Stark shift using strong nonresonant pulses, we show that it is in principle possible to prepare arbitrary superposition states of mixed multiplicity. By a proper choice of parameters, the transfer of population is shown to follow the Rabi formula, where the initial and target states are now vibrational states of two light-induced molecular potentials of different multiplicity. Starting from nonstationary wave packets, the spin transfer can proceed via parallel transfer using a single pulse or by sequential transfer using a pulse sequence. A simple model is proposed to analyze the properties of both schemes and the feasibility of their experimental implementation for spin-orbit transitions in Rb2.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp066825yDOI Listing

Publication Analysis

Top Keywords

strong nonresonant
8
nonresonant pulses
8
transfer
5
vibrationally state-selective
4
state-selective spin-orbit
4
spin-orbit transfer
4
transfer strong
4
pulses dynamic
4
dynamic stark
4
stark shift
4

Similar Publications

The integrated frequency comb generator based on Kerr parametric oscillation has led to chip-scale, gigahertz-spaced combs with new applications spanning hyperscale telecommunications, low-noise microwave synthesis, light detection and ranging, and astrophysical spectrometer calibration. Recent progress in lithium niobate (LiNbO) photonic integrated circuits (PICs) has resulted in chip-scale, electro-optic (EO) frequency combs, offering precise comb-line positioning and simple operation without relying on the formation of dissipative Kerr solitons. However, current integrated EO combs face limited spectral coverage due to the large microwave power required to drive the non-resonant capacitive electrodes and the strong intrinsic birefringence of LiNbO.

View Article and Find Full Text PDF

Strong enhancement of effective refractive index in structured colloids (TiO@Silica): Localization of light.

Nanoscale

December 2024

Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, Campinas, SP 13083-859, Brazil.

We use non-resonant Raman scattering to demonstrate a large enhancement of the effective refractive index experienced by Raman photons in a scattering medium comprising spatially-correlated photonic structures of core-shell TiO@Silica scatterers mixed with silica nanoparticles and suspended in ethanol. We show that the high refractive index extends outside the physical boundary of the medium, which is attributed to the evanescent contributions of electromagnetic modes that are strongly localized within the medium. Notably, the effective enhancement can be observed even at very low intensities of Raman emission.

View Article and Find Full Text PDF

Measuring complex SFG: Characterizing a phase reference.

J Chem Phys

December 2024

Tufts University, Laboratory for Water and Surface Studies, Department of Chemistry, 62 Talbot Ave., Medford, Massachusetts 02155, USA.

Reactions and interactions at interfaces play pivotal roles in processes ranging from atmospheric aerosols influencing climate to battery electrodes determining charge-discharge rates to defects in catalysts controlling the fate of reactants to the outcome of biological processes at membrane interfaces. Tools to probe these surfaces at the atomic-molecular level are thus critical. Chief among non-invasive probes is the vibrational spectroscopy sum frequency generation (SFG).

View Article and Find Full Text PDF

Two-dimensional (2D) materials serve as exceptional platforms for controlled second-harmonic generation (SHG). Current approaches to SHG control often depend on nonresonant conditions or symmetry breaking via single-gate control. Here, we employ dual-gate bilayer WSe to demonstrate an SHG enhancement concept that leverages strong exciton resonance and a layer-dependent exciton-polaron effect.

View Article and Find Full Text PDF

Resonant vibrational strong coupling (VSC) between molecular vibrations and quantized field modes of low-frequency optical cavities constitutes the conceptual cornerstone of vibro-polaritonic chemistry. In this work, we theoretically investigate the role of complementary nonresonant electron-photon interactions in the cavity Born-Oppenheimer (CBO) approximation. In particular, we study cavity-induced modifications of local and non-local electronic interactions in dipole-coupled molecular ensembles under VSC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!