Cross-linking yield variation of a potent matrix metalloproteinase photoaffinity probe and consequences for functional proteomics.

Angew Chem Int Ed Engl

CEA, Institut de Biologie et des Technologies de Saclay, Service d'Ingénierie Moléculaire des Proéines, 91191 Gif/Yvette Cedex, France.

Published: July 2007

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.200604408DOI Listing

Publication Analysis

Top Keywords

cross-linking yield
4
yield variation
4
variation potent
4
potent matrix
4
matrix metalloproteinase
4
metalloproteinase photoaffinity
4
photoaffinity probe
4
probe consequences
4
consequences functional
4
functional proteomics
4

Similar Publications

(L.) DC., commonly known as Japanese pepper, is a deciduous shrub native to East Asia.

View Article and Find Full Text PDF

The large-scale implementation of 2D material-based membranes is hindered by mechanical stability and mass transport control challenges. This work describes the fabrication, characterisation, and testing of self-standing graphene oxide (GO) membranes cross-linked with oxides such as FeO, AlO, CaSO, NbO, and a carbide, SiC. These cross-linking agents enhance the mechanical stability of the membranes and modulate their mass transport properties.

View Article and Find Full Text PDF

IP-to-MS: An Unbiased Workflow for Antigen Profiling.

J Proteome Res

January 2025

Impact Proteomics, LLC., Pittsburgh, Pennsylvania 15206, United States.

Immunoprecipitation is among the most widely utilized methods in biomedical research, with applications that include the identification of antibody targets and associated proteins. The path to identifying these targets is not straightforward, however, and often requires the use of chemical cross-linking and/or gel electrophoresis to separate targets from an overabundance of immunoglobulin protein. Such experiments are labor intensive and often yield long lists of candidate antibody targets.

View Article and Find Full Text PDF

Protein-protein interactions in the cell membrane are typically mediated by glycans, with terminal sialic acid often involved in these interactions. To probe the nature of the interactions, we developed quantitative cross-linking methods involving the glycans of the glycoproteins and the polypeptide moieties of proteins. We designed and synthesized biotinylated enrichable cross-linkers that were click-tagged to metabolically incorporate azido-sialic acid on cell surface glycans to allow cross-linking of the azido-glycans with lysine residues on proximal polypeptides.

View Article and Find Full Text PDF

Chemical cross-linking/mass spectrometry (XL-MS) has emerged as a complementary tool for mapping interaction sites within protein networks as well as gaining moderate-resolution native structural insight with minimal interference. XL-MS technology mostly relies on chemoselective reactions (cross-linking) between protein residues and a linker. DSSO represents a versatile cross-linker for protein structure investigation and in-cell XL-MS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!