Elevated arsenic (As) concentrations in urban soils with prolonged arsenical pesticide application history have increased the risk associated with accidental hand-to-mouth soil ingestion by children. Earlier work by the authors suggested that the conservative statement of 100% As bioaccessibility in soils was not valid for a set of acidic soils incubated with sodium arsenate. In this study, two alkaline Texas soils incubated with a commonly used As pesticide (sodium arsenate) were evaluated for their potential in reducing soil As bioaccessibility. The objective of this study was to evaluate the effects of incubation time and As load on soil As fractionation and bioaccessibility. Soils were subjected to a sequential As fractionation scheme, and bioaccessible As was quantified using an in vitro stomach phase test. Results showed a reduction in the water-soluble As fraction with incubation time (after 4 months), which remained unchanged after 12 months. This reduction with time was accompanied by an increase in the NaOH- and H(2)SO(4)-extractable As fractions, suggesting As sorption by amorphous Fe/Al hydroxides and/or Ca/Mg compounds, respectively. Organic/sulfides-bound As increased with incubation time after 12 months but not after 4 months of incubation. The aging effect was also observed with the amount of bioaccessible As at all As loads, showing significant positive correlations with the water-extractable and exchangeable As fractions. Bioaccessible As concentrations even after 12 months of incubation were not significantly reduced, suggesting that natural attenuation might prove inadequate to control As bioaccessibility in these alkaline soils.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00244-006-0147-7 | DOI Listing |
Environ Sci Technol
January 2025
College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
Charosphere, a highly active zone between biochar and surrounding soil, is widely present in agricultural and wildfire-affected soils, yet whether reactive oxygen species (ROS) are produced within the charosphere remains unclear. Herein, the production and spatiotemporal evolution of charosphere ROS were explored. In situ ROS capture visualized a gradual decrease in ROS production with increasing distance from the biochar/soil interface.
View Article and Find Full Text PDFCommun Earth Environ
January 2025
Center for Volatile Interactions (VOLT), Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark.
Permafrost is a considerable carbon reservoir harboring up to 1700 petagrams of carbon accumulated over millennia, which can be mobilized as permafrost thaws under global warming. Recent studies have highlighted that a fraction of this carbon can be transformed to atmospheric volatile organic compounds, which can affect the atmospheric oxidizing capacity and contribute to the formation of secondary organic aerosols. In this study, active layer soils from the seasonally unfrozen layer above the permafrost were collected from two distinct locations of the Greenlandic permafrost and incubated to explore their roles in the soil-atmosphere exchange of volatile organic compounds.
View Article and Find Full Text PDFEnviron Health (Wash)
January 2025
Department of Biology, University of Texas at Tyler, Tyler, Texas 75799, United States.
Achieving sustainable development in livestock agriculture by balancing livestock production, reduction of greenhouse gas (GHG) emissions, and effective utilization of nitrogen nutrient has indeed been challenging. This study investigated the long-term effects of continuous cattle grazing, stocking rates, and fertilization regimens on methane (CH) emissions, soil microbial communities, and soil organic carbon (SOC) stocks in Bermudagrass pastures in East Texas, USA. Pastures were subjected to high or low stocking rates for over 50 years, with further subdivision based on fertilization: nitrogen-based fertilizer application or no fertilizer but with the growth of annual clover.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Key Laboratory of Water Environment Evolution and Pollution Control in the Three Gorges Reservoir, Chongqing Three Georges University, Chongqing, 404100, PR China.
Nitrogen and phosphorus depositions and global warming have continuously intensified, impacting soil respiration. However, the response mechanisms of soil respiration rate (R) and its temperature sensitivity (Q) to nitrogen and phosphorus depositions are still unclear, especially for riparian zones. Intact Fluvisols were collected at different water-level elevations (150, 160, 170, and 180 m) of the riparian zone of the Three Gorges Reservoir, China and incubated under 20 and 30 °C with additions of nitrogen (36 kg N ha yr), phosphorus (0.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
Viruses are considered to regulate bacterial communities and terrestrial nutrient cycling, yet their effects on bacterial metabolism and the mechanisms of carbon (C) dynamics during dissolved organic matter (DOM) mineralization remain unknown. Here, we added active and inactive bacteriophages (phages) to soil DOM with original bacterial communities and incubated them at 18 or 23 °C for 35 days. Phages initially (1-4 days) reduced CO efflux rate by 13-21% at 18 °C and 3-30% at 23 °C but significantly ( < 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!