Although replication-competent viruses have been developed to treat cancers, their cytotoxic effects are insufficient, as infection is inhibited by the generation of neutralizing antibodies. To address this limitation, we developed a carrier cell system to deliver a replication-competent adenovirus. Carrier cells infected with replication-competent adenovirus were incubated with target cancer cells in a high titer of anti-adenovirus antibody. Carrier cells were injected into syngeneic subcutaneous tumors after immunization with adenovirus. Carrier cell-derived cell fragments containing viral particles were engulfed by proliferative target cancer cells. This engulfment-mediated transfer of adenovirus was not inhibited by the anti-adenovirus antibody and enabled repetitive infection. After the induction of anti-adenoviral cytotoxic T-lymphocyte (CTL) responses by immunization with adenovirus, administration of carrier cells infected with a replication-competent adenovirus induced complete tumor regression. Adenovirus-GM-CSF augmented the anti-tumor effect of carrier cells by increasing anti-adenoviral and anti-tumoral CTL responses and decreased the number of injections of carrier cells required to induce complete tumor regression. This novel carrier cell-mediated viral transfection system might prove useful in a variety of cancer therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.mt.6300128 | DOI Listing |
Naunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras, Kuala Lumpur, 56000, Malaysia.
The third most prevalent type of cancer in the world, colorectal cancer, poses a significant treatment challenge due to the nonspecific distribution, low efficacy, and high systemic toxicity associated with chemotherapy. To overcome these limitations, a targeted drug delivery system with a high cytotoxicity against cancer cells while maintaining a minimal systemic side effects represents a promising therapeutic approach. Therefore, the aim of this study was to develop an efficient gold nanocarrier for the targeted delivery of the anticancer agent everolimus to Caco-2 cells.
View Article and Find Full Text PDFmBio
January 2025
Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA.
The 55-carbon isoprenoid, undecaprenyl-phosphate (UndP), is a universal carrier lipid that ferries most glycans and glycopolymers across the cytoplasmic membrane in bacteria. In addition to peptidoglycan precursors, UndP transports O-antigen, capsule, wall teichoic acids, and sugar modifications. How this shared but limited lipid is distributed among competing pathways is just beginning to be elucidated.
View Article and Find Full Text PDFBiomater Sci
January 2025
Electrochemical Process Engineering, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630003, Tamil Nadu, India.
Nanotechnology and 3D bioprinted scaffolds are revolutionizing the field of wound healing and skin regeneration. By facilitating proper cellular movement and providing a customizable structure that replicates the extracellular matrix, such technologies not only expedite the healing process but also ensure the seamless integration of new skin layers, enhancing tissue repair and promoting overall cell growth. This study centres on the creation and assessment of a nanostructured lipid carrier containing curcumin (CNLC), which is integrated into a 3D bioprinted PLA scaffold system.
View Article and Find Full Text PDFIran J Basic Med Sci
January 2025
Department of Obstetrics and Gynecology, Shanghai Pudong Hospital of Fudan University, Pudong, Shanghai-201399, China.
Objectives: LOXL2, known as Lysyl oxidase-like 2, is classified as a lysyl oxidase (LOX) family member. However, its role and mechanism in endometrial cancer (EC) are unknown. Therefore, we aimed to investigate the potential role and mechanism of LOXL2 in EC.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA.
Introduction: Iron-mediated cell death (ferroptosis) is a proposed mechanism of Alzheimer's disease (AD) pathology. While iron is essential for basic biological functions, its reactivity generates oxidants which contribute to cell damage and death.
Methods: To further resolve mechanisms of iron-mediated toxicity in AD, we analyzed post mortem human brain and ApoEFAD mice.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!