Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Arabinofuranosyltransferase enzymes, such as EmbA, EmbB, and AftA, play pivotal roles in the biosynthesis of arabinogalactan, and the anti-tuberculosis agent ethambutol (EMB) targets arabinogalactan biosynthesis through inhibition of Mt-EmbA and Mt-EmbB. Herein, we describe the identification and characterization of a novel arabinofuranosyltransferase, now termed AftB (Rv3805c), which is essential in Mycobacterium tuberculosis. Deletion of its orthologue NCgl2780 in the closely related species Corynebacterium glutamicum resulted in a viable mutant. Analysis of the cell wall-associated lipids from the deletion mutant revealed a decreased abundance of cell wall-bound mycolic acids, consistent with a partial loss of mycolylation sites. Subsequent glycosyl linkage analysis of arabinogalactan also revealed the complete absence of terminal beta(1 --> 2)-linked arabinofuranosyl residues. The deletion mutant biochemical phenotype was fully complemented by either Mt-AftB or Cg-AftB, but not with muteins of Mt-AftB, where the two adjacent aspartic acid residues, which have been suggested to be involved in glycosyltransferase activity, were replaced by alanine. In addition, the use of C. glutamicum and C. glutamicumDeltaaftB in an in vitro assay utilizing the sugar donor beta-D-arabinofuranosyl-1-monophosphoryl-decaprenol together with the neoglycolipid acceptor alpha-D-Araf-(1 --> 5)-alpha-D-Araf-O-C(8) as a substrate confirmed AftB as a terminal beta(1 --> 2) arabinofuranosyltransferase, which was also insensitive to EMB. Altogether, these studies have shed further light on the complexities of Corynebacterianeae cell wall biosynthesis, and Mt-AftB represents a potential new drug target.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M700271200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!